Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

Hormone receptor status of a first primary breast cancer predicts contralateral breast cancer risk in the WECARE study population

Authors: Anne S. Reiner, Charles F. Lynch, Julia S. Sisti, Esther M. John, Jennifer D. Brooks, Leslie Bernstein, Julia A. Knight, Li Hsu, Patrick Concannon, Lene Mellemkjær, Marc Tischkowitz, Robert W. Haile, Ronglai Shen, Kathleen E. Malone, Meghan Woods, Xiaolin Liang, Monica Morrow, Jonine L. Bernstein, on behalf of WECARE Study Collaborative Group

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Previous population-based studies have described first primary breast cancer tumor characteristics and their association with contralateral breast cancer (CBC) risk. However, information on influential covariates such as treatment, family history of breast cancer, and BRCA1/2 mutation carrier status was not available. In a large, population-based, case-control study, we evaluated whether tumor characteristics of the first primary breast cancer are associated with risk of developing second primary asynchronous CBC, overall and in subgroups of interest, including among BRCA1/2 mutation non-carriers, women who are not treated with tamoxifen, and women without a breast cancer family history.

Methods

The Women’s Environmental Cancer and Radiation Epidemiology Study is a population-based case-control study of 1521 CBC cases and 2212 individually-matched controls with unilateral breast cancer. Detailed information about breast cancer risk factors, treatment for and characteristics of first tumors, including estrogen receptor (ER) and progesterone receptor (PR) status, was obtained by telephone interview and medical record abstraction. Multivariable risk ratios (RRs) and 95% confidence intervals (CIs) were estimated in conditional logistic regression models, adjusting for demographics, treatment, and personal medical and family history. A subset of women was screened for BRCA1/2 mutations.

Results

Lobular histology of the first tumor was associated with a 30% increase in CBC risk (95% CI 1.0–1.6). Compared to women with ER+/PR+ first tumors, those with ER-/PR- tumors had increased risk of CBC (RR = 1.4, 95% CI 1.1–1.7). Notably, women with ER-/PR- first tumors were more likely to develop CBC with the ER-/PR- phenotype (RR = 5.4, 95% CI 3.0–9.5), and risk remained elevated in multiple subgroups: BRCA1/2 mutation non-carriers, women younger than 45 years of age, women without a breast cancer family history, and women who were not treated with tamoxifen.

Conclusions

Having a hormone receptor negative first primary breast cancer is associated with increased risk of CBC. Women with ER-/PR- primary tumors were more likely to develop ER-/PR- CBC, even after excluding BRCA1/2 mutation carriers. Hormone receptor status, which is routinely evaluated in breast tumors, may be used clinically to determine treatment protocols and identify patients who may benefit from increased surveillance for CBC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bernstein JL, Thompson WD, Risch N, Holford TR. Risk factors predicting the incidence of second primary breast cancer among women diagnosed with a first primary breast cancer. Am J Epidemiol. 1992;136:925–36.CrossRefPubMed Bernstein JL, Thompson WD, Risch N, Holford TR. Risk factors predicting the incidence of second primary breast cancer among women diagnosed with a first primary breast cancer. Am J Epidemiol. 1992;136:925–36.CrossRefPubMed
2.
go back to reference Chen Y, Thompson W, Semenciw R, Mao Y. Epidemiology of contralateral breast cancer. Cancer Epidemiol Biomarkers Prev. 1999;8:855–61.PubMed Chen Y, Thompson W, Semenciw R, Mao Y. Epidemiology of contralateral breast cancer. Cancer Epidemiol Biomarkers Prev. 1999;8:855–61.PubMed
5.
go back to reference Nichols HB, Berrington de Gonzalez A, Lacey Jr JV, Rosenberg PS, Anderson WF. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol. 2001;29:1564–9.CrossRef Nichols HB, Berrington de Gonzalez A, Lacey Jr JV, Rosenberg PS, Anderson WF. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol. 2001;29:1564–9.CrossRef
6.
go back to reference Li CI, Malone KE, Porter PL, Daling JR. Epidemiologic and molecular risk factors for contralateral breast cancer among young women. Br J Cancer. 2003;89:513–8.CrossRefPubMedPubMedCentral Li CI, Malone KE, Porter PL, Daling JR. Epidemiologic and molecular risk factors for contralateral breast cancer among young women. Br J Cancer. 2003;89:513–8.CrossRefPubMedPubMedCentral
7.
go back to reference Hemminki K, Ji J, Forsti A. Risks for familial and contralateral breast cancer interact multiplicatively and cause a high risk. Cancer Res. 2007;67:868–70.CrossRefPubMed Hemminki K, Ji J, Forsti A. Risks for familial and contralateral breast cancer interact multiplicatively and cause a high risk. Cancer Res. 2007;67:868–70.CrossRefPubMed
8.
go back to reference Hom PL, Thompson WD. Risk of contralateral breast cancer: associations with factors related to initial breast cancer. Am J Epidemiol. 1988;128:309–23.CrossRef Hom PL, Thompson WD. Risk of contralateral breast cancer: associations with factors related to initial breast cancer. Am J Epidemiol. 1988;128:309–23.CrossRef
9.
go back to reference Hom PL, Thompson WD, Schwartz SM. Factors associated with the risk of second primary breast cancer: an analysis of data from the Connecticut Tumor Registry. J Chronic Dis. 1987;40:1003–11.CrossRef Hom PL, Thompson WD, Schwartz SM. Factors associated with the risk of second primary breast cancer: an analysis of data from the Connecticut Tumor Registry. J Chronic Dis. 1987;40:1003–11.CrossRef
10.
go back to reference Prior P, Waterhouse JA. Incidence of bilateral tumours in a population-based series of breast-cancer patients. I. Two approaches to an epidemiologic analysis. Br J Cancer. 1978;37:620–34.CrossRefPubMedPubMedCentral Prior P, Waterhouse JA. Incidence of bilateral tumours in a population-based series of breast-cancer patients. I. Two approaches to an epidemiologic analysis. Br J Cancer. 1978;37:620–34.CrossRefPubMedPubMedCentral
11.
go back to reference Graeser MK, Engel C, Rhiem K, Gadzicki D, Bick U, Kast K, et al. Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:5887–92.CrossRefPubMed Graeser MK, Engel C, Rhiem K, Gadzicki D, Bick U, Kast K, et al. Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:5887–92.CrossRefPubMed
12.
go back to reference Metcalfe K, Lynch HT, Ghadirian P, Tung N, Olivotto I, Warner E, et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2004;22:2328–35.CrossRefPubMed Metcalfe K, Lynch HT, Ghadirian P, Tung N, Olivotto I, Warner E, et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2004;22:2328–35.CrossRefPubMed
13.
go back to reference Largent JA, Capanu M, Bernstein L, Langholz B, Mellemkaer L, Malone KE, et al. Reproductive history and risk of second primary breast cancer: the WECARE study. Cancer Epidemiol Biomarkers Prev. 2007;16:906–11.CrossRefPubMed Largent JA, Capanu M, Bernstein L, Langholz B, Mellemkaer L, Malone KE, et al. Reproductive history and risk of second primary breast cancer: the WECARE study. Cancer Epidemiol Biomarkers Prev. 2007;16:906–11.CrossRefPubMed
14.
go back to reference Druesne-Pecollo N, Touvier M, Barrandon E, Chan DS, Norat T, Zelek L, et al. Excess body weight and second primary cancer risk after breast cancer: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;135:647–54.CrossRefPubMed Druesne-Pecollo N, Touvier M, Barrandon E, Chan DS, Norat T, Zelek L, et al. Excess body weight and second primary cancer risk after breast cancer: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;135:647–54.CrossRefPubMed
15.
go back to reference Bertelsen L, Bernstein L, Olsen JH, Mellemkjaer L, Haile RW, Lynch CF, et al. Effect of systematic adjuvant treatment on risk for contralateral breast cancer in the Women’s Environment, Cancer and Radiation Epidemiology Study. J Natl Cancer Inst. 2008;100:32–40.CrossRefPubMed Bertelsen L, Bernstein L, Olsen JH, Mellemkjaer L, Haile RW, Lynch CF, et al. Effect of systematic adjuvant treatment on risk for contralateral breast cancer in the Women’s Environment, Cancer and Radiation Epidemiology Study. J Natl Cancer Inst. 2008;100:32–40.CrossRefPubMed
16.
go back to reference Langballe R, Mellemkjaer L, Malone KE, Lynch CF, John EM, Knight JA, et al. Systemic therapy and risk of contralateral breast cancer in the WECARE Study. Breast Cancer Res. 2016;18:65.CrossRefPubMedPubMedCentral Langballe R, Mellemkjaer L, Malone KE, Lynch CF, John EM, Knight JA, et al. Systemic therapy and risk of contralateral breast cancer in the WECARE Study. Breast Cancer Res. 2016;18:65.CrossRefPubMedPubMedCentral
17.
go back to reference Early Breast Cancer Trialists’ Collaborative Group, Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials. Lancet. 2011;78:771–84.CrossRef Early Breast Cancer Trialists’ Collaborative Group, Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials. Lancet. 2011;78:771–84.CrossRef
18.
go back to reference Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32(21):2255–69.CrossRefPubMedPubMedCentral Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32(21):2255–69.CrossRefPubMedPubMedCentral
19.
go back to reference Broet P, de la Rochefordiere A, Scholl SM, Fourquet A, Mosseri V, Durand JC, et al. Contralateral breast cancer: annual incidence and risk parameters. J Clin Oncol. 1995;13:1578–83.CrossRefPubMed Broet P, de la Rochefordiere A, Scholl SM, Fourquet A, Mosseri V, Durand JC, et al. Contralateral breast cancer: annual incidence and risk parameters. J Clin Oncol. 1995;13:1578–83.CrossRefPubMed
20.
go back to reference Ji J, Hemminki K. Risk for contralateral breast cancers in a population covered by mammography: effects of family history, age at diagnosis and histology. Breast Cancer Res Treat. 2007;105:229–36.CrossRefPubMed Ji J, Hemminki K. Risk for contralateral breast cancers in a population covered by mammography: effects of family history, age at diagnosis and histology. Breast Cancer Res Treat. 2007;105:229–36.CrossRefPubMed
21.
go back to reference Gao X, Fisher SG, Emami B. Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys. 2003;56:1038–45.CrossRefPubMed Gao X, Fisher SG, Emami B. Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys. 2003;56:1038–45.CrossRefPubMed
22.
go back to reference Swain SM, Wilson JW, Mamounas EP, Bryant J, Wickerham DL, Fisher B, et al. Estrogen receptor status of primary breast cancer is predictive of estrogen receptor status of contralateral breast cancer. J Natl Cancer Inst. 2004;96:516–23.CrossRefPubMed Swain SM, Wilson JW, Mamounas EP, Bryant J, Wickerham DL, Fisher B, et al. Estrogen receptor status of primary breast cancer is predictive of estrogen receptor status of contralateral breast cancer. J Natl Cancer Inst. 2004;96:516–23.CrossRefPubMed
23.
go back to reference Kollias J, Ellis IO, Elston CW, Blamey RW. Clinical and histological predictors of contralateral breast cancer. Eur J Surg Oncol. 1999;25:584–9.CrossRefPubMed Kollias J, Ellis IO, Elston CW, Blamey RW. Clinical and histological predictors of contralateral breast cancer. Eur J Surg Oncol. 1999;25:584–9.CrossRefPubMed
24.
go back to reference Vichapat V, Gillett C, Fentiman IS, Tutt A, Holmberg L, Luchtenborg M. Risk factors for metachronous contralateral breast cancer suggest two aetiological pathways. Eur J Cancer. 2011;47:1919–27.CrossRefPubMed Vichapat V, Gillett C, Fentiman IS, Tutt A, Holmberg L, Luchtenborg M. Risk factors for metachronous contralateral breast cancer suggest two aetiological pathways. Eur J Cancer. 2011;47:1919–27.CrossRefPubMed
25.
go back to reference Bessonova L, Taylor TH, Mehta RS, Zell JA, Anton-Culver H. Risk of second breast cancer associated with hormone-receptor and HER2-neu status of the first breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:389–96.CrossRefPubMedPubMedCentral Bessonova L, Taylor TH, Mehta RS, Zell JA, Anton-Culver H. Risk of second breast cancer associated with hormone-receptor and HER2-neu status of the first breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:389–96.CrossRefPubMedPubMedCentral
26.
go back to reference Kurian AW, McClure LA, John EM, Horn-Ross PL, Ford JM, Clarke CA. Second primary breast cancer occurrence according to hormone receptor status. J Natl Cancer Inst. 2009;101:1058–65.CrossRefPubMedPubMedCentral Kurian AW, McClure LA, John EM, Horn-Ross PL, Ford JM, Clarke CA. Second primary breast cancer occurrence according to hormone receptor status. J Natl Cancer Inst. 2009;101:1058–65.CrossRefPubMedPubMedCentral
27.
go back to reference Rusner C, Wolf K, Banderner-Greulich U, Stegmaier C, Holleczek B, Schubert-Fritschle G, et al. Risk of contralateral second primary breast cancer according to hormone receptor status in Germany. Breast Cancer Res. 2014;16:452.CrossRefPubMedPubMedCentral Rusner C, Wolf K, Banderner-Greulich U, Stegmaier C, Holleczek B, Schubert-Fritschle G, et al. Risk of contralateral second primary breast cancer according to hormone receptor status in Germany. Breast Cancer Res. 2014;16:452.CrossRefPubMedPubMedCentral
28.
go back to reference Saltzman BS, Malone KE, McDougall JA, Daling JR, Li CL. Estrogen receptor, progesterone receptor, and HER2-neu expression in first primary breast cancers and risk of second primary contralateral breast cancer. Breast Cancer Res Treat. 2012;135:849–55.CrossRefPubMedPubMedCentral Saltzman BS, Malone KE, McDougall JA, Daling JR, Li CL. Estrogen receptor, progesterone receptor, and HER2-neu expression in first primary breast cancers and risk of second primary contralateral breast cancer. Breast Cancer Res Treat. 2012;135:849–55.CrossRefPubMedPubMedCentral
29.
go back to reference Sandberg ME, Hall P, Hartman M, Johansson AL, Eloranta S, Ploner A, et al. Estrogen receptor status in relation to risk of contralateral breast cancer: a population-based cohort study. PLoS One. 2012;7, e46535.CrossRefPubMedPubMedCentral Sandberg ME, Hall P, Hartman M, Johansson AL, Eloranta S, Ploner A, et al. Estrogen receptor status in relation to risk of contralateral breast cancer: a population-based cohort study. PLoS One. 2012;7, e46535.CrossRefPubMedPubMedCentral
30.
go back to reference Foulkes WD, Metcalfe K, Sun P, Hanna WM, Lynch HT, Ghadirian P, et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res. 2004;10:2029–34.CrossRefPubMed Foulkes WD, Metcalfe K, Sun P, Hanna WM, Lynch HT, Ghadirian P, et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res. 2004;10:2029–34.CrossRefPubMed
31.
go back to reference Loman N, Johannsson O, Bendahl PO, Borg A, Ferno M, Olsson H. Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutation or unknown susceptibility genes. Cancer. 1998;83:310–9.CrossRefPubMed Loman N, Johannsson O, Bendahl PO, Borg A, Ferno M, Olsson H. Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutation or unknown susceptibility genes. Cancer. 1998;83:310–9.CrossRefPubMed
32.
go back to reference Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.CrossRefPubMed Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.CrossRefPubMed
33.
go back to reference Bernstein JL, Langholz B, Haile RW, Bernstein L, Thomas DC, Stovall M, et al. Study design: evaluation gene-environment interactions in the etiology of breast cancer: the WECARE study. Breast Cancer Res. 2004;6:R199–214.CrossRefPubMedPubMedCentral Bernstein JL, Langholz B, Haile RW, Bernstein L, Thomas DC, Stovall M, et al. Study design: evaluation gene-environment interactions in the etiology of breast cancer: the WECARE study. Breast Cancer Res. 2004;6:R199–214.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Abrams JS. Tamoxifen: Five versus ten years—is the end in sight? J Natl Cancer Inst. 2001;93:662–4.CrossRefPubMed Abrams JS. Tamoxifen: Five versus ten years—is the end in sight? J Natl Cancer Inst. 2001;93:662–4.CrossRefPubMed
36.
go back to reference The Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–67.CrossRef The Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–67.CrossRef
37.
go back to reference Ejlertsen B, Jensen M, Mouridsen H, Danish Breast Cancer Cooperative Group. Excess mortality in postmenopausal high-risk women who only receive adjuvant endocrine therapy for estrogen receptor positive breast cancer. Acta Oncol. 2014;53:174–85.CrossRefPubMed Ejlertsen B, Jensen M, Mouridsen H, Danish Breast Cancer Cooperative Group. Excess mortality in postmenopausal high-risk women who only receive adjuvant endocrine therapy for estrogen receptor positive breast cancer. Acta Oncol. 2014;53:174–85.CrossRefPubMed
38.
go back to reference Hefti MM, Hu R, Knoblauch NW, Collins LC, Haibe-Kains B, Tamimi RM, et al. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res. 2013;15:R68.CrossRefPubMedPubMedCentral Hefti MM, Hu R, Knoblauch NW, Collins LC, Haibe-Kains B, Tamimi RM, et al. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res. 2013;15:R68.CrossRefPubMedPubMedCentral
39.
go back to reference Huo D, Melkonian S, Rathouz PJ, Khramtsov A, Olopade OI. Concordance in histological and biological parameters between first and second primary breast cancers. Cancer. 2011;117:907–15.CrossRefPubMed Huo D, Melkonian S, Rathouz PJ, Khramtsov A, Olopade OI. Concordance in histological and biological parameters between first and second primary breast cancers. Cancer. 2011;117:907–15.CrossRefPubMed
40.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.CrossRefPubMed Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.CrossRefPubMed
41.
go back to reference Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.CrossRefPubMedPubMedCentral Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.CrossRefPubMedPubMedCentral
42.
go back to reference Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;131:159–67.CrossRefPubMed Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;131:159–67.CrossRefPubMed
43.
go back to reference Arpino G, Weiss HL, Clark GM, Hilsenbeck SG, Osborne CK. Hormone receptor status of a contralateral breast cancer is independent of the receptor status of the first primary in patients not receiving adjuvant tamoxifen. J Clin Oncol. 2005;23:4687–94.CrossRefPubMed Arpino G, Weiss HL, Clark GM, Hilsenbeck SG, Osborne CK. Hormone receptor status of a contralateral breast cancer is independent of the receptor status of the first primary in patients not receiving adjuvant tamoxifen. J Clin Oncol. 2005;23:4687–94.CrossRefPubMed
44.
go back to reference Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6:R149–56.CrossRefPubMedPubMedCentral Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6:R149–56.CrossRefPubMedPubMedCentral
45.
go back to reference Ma H, Wang Y, Sullivan-Halley J, Weiss L, Burkman RT, Simon MS, et al. Breast cancer receptor status: do results from a centralized pathology laboratory agree with SEER registry reports? Cancer Epidemiol Biomarkers Prev. 2009;18:2214–20.CrossRefPubMedPubMedCentral Ma H, Wang Y, Sullivan-Halley J, Weiss L, Burkman RT, Simon MS, et al. Breast cancer receptor status: do results from a centralized pathology laboratory agree with SEER registry reports? Cancer Epidemiol Biomarkers Prev. 2009;18:2214–20.CrossRefPubMedPubMedCentral
46.
go back to reference Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106:dju055.CrossRefPubMedPubMedCentral Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106:dju055.CrossRefPubMedPubMedCentral
47.
go back to reference The SEER Program Code Manual, Revised Edition June 1992. National Cancer Institute, 1992 The SEER Program Code Manual, Revised Edition June 1992. National Cancer Institute, 1992
Metadata
Title
Hormone receptor status of a first primary breast cancer predicts contralateral breast cancer risk in the WECARE study population
Authors
Anne S. Reiner
Charles F. Lynch
Julia S. Sisti
Esther M. John
Jennifer D. Brooks
Leslie Bernstein
Julia A. Knight
Li Hsu
Patrick Concannon
Lene Mellemkjær
Marc Tischkowitz
Robert W. Haile
Ronglai Shen
Kathleen E. Malone
Meghan Woods
Xiaolin Liang
Monica Morrow
Jonine L. Bernstein
on behalf of WECARE Study Collaborative Group
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0874-x

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine