Skip to main content
Top
Published in: Breast Cancer Research 1/2015

Open Access 01-12-2015 | Research article

A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation

Authors: Angela Burleigh, Steven McKinney, Jazmine Brimhall, Damian Yap, Peter Eirew, Steven Poon, Viola Ng, Adrian Wan, Leah Prentice, Lois Annab, J Carl Barrett, Carlos Caldas, Connie Eaves, Samuel Aparicio

Published in: Breast Cancer Research | Issue 1/2015

Login to get access

Abstract

Introduction

The extracellular signals regulating mammary epithelial cell growth are of relevance to understanding the pathophysiology of mammary epithelia, yet they remain poorly characterized. In this study, we applied an unbiased approach to understanding the functional role of signalling molecules in several models of normal physiological growth and translated these results to the biological understanding of breast cancer subtypes.

Methods

We developed and utilized a cytogenetically normal clonal line of hTERT immortalized human mammary epithelial cells in a fibroblast-enhanced co-culture assay to conduct a genome-wide small interfering RNA (siRNA) screen for evaluation of the functional effect of silencing each gene. Our selected endpoint was inhibition of growth. In rigorous postscreen validation processes, including quantitative RT-PCR, to ensure on-target silencing, deconvolution of pooled siRNAs and independent confirmation of effects with lentiviral short-hairpin RNA constructs, we identified a subset of genes required for mammary epithelial cell growth. Using three-dimensional Matrigel growth and differentiation assays and primary human mammary epithelial cell colony assays, we confirmed that these growth effects were not limited to the 184-hTERT cell line. We utilized the METABRIC dataset of 1,998 breast cancer patients to evaluate both the differential expression of these genes across breast cancer subtypes and their prognostic significance.

Results

We identified 47 genes that are critically important for fibroblast-enhanced mammary epithelial cell growth. This group was enriched for several axonal guidance molecules and G protein–coupled receptors, as well as for the endothelin receptor PROCR. The majority of genes (43 of 47) identified in two dimensions were also required for three-dimensional growth, with HSD17B2, SNN and PROCR showing greater than tenfold reductions in acinar formation. Several genes, including PROCR and the neuronal pathfinding molecules EFNA4 and NTN1, were also required for proper differentiation and polarization in three-dimensional cultures. The 47 genes identified showed a significant nonrandom enrichment for differential expression among 10 molecular subtypes of breast cancer sampled from 1,998 patients. CD79A, SERPINH1, KCNJ5 and TMEM14C exhibited breast cancer subtype–independent overall survival differences.

Conclusion

Diverse transmembrane signals are required for mammary epithelial cell growth in two-dimensional and three-dimensional conditions. Strikingly, we define novel roles for axonal pathfinding receptors and ligands and the endothelin receptor in both growth and differentiation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14:1384–9.CrossRefPubMed Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14:1384–9.CrossRefPubMed
3.
go back to reference Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.CrossRefPubMed Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.CrossRefPubMed
4.
go back to reference Smith HS, Lan S, Ceriani R, Hackett AJ, Stampfer MR. Clonal proliferation of cultured nonmalignant and malignant human breast epithelia. Cancer Res. 1981;41:4637–43.PubMed Smith HS, Lan S, Ceriani R, Hackett AJ, Stampfer MR. Clonal proliferation of cultured nonmalignant and malignant human breast epithelia. Cancer Res. 1981;41:4637–43.PubMed
5.
go back to reference Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101:4966–71.CrossRefPubMedPubMedCentral Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101:4966–71.CrossRefPubMedPubMedCentral
6.
go back to reference Parmar H, Young P, Emerman JT, Neve RM, Dairkee S, Cunha GR. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology. 2002;143:4886–96.CrossRefPubMed Parmar H, Young P, Emerman JT, Neve RM, Dairkee S, Cunha GR. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology. 2002;143:4886–96.CrossRefPubMed
7.
go back to reference Haslam SZ. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 1986;46:310–6.PubMed Haslam SZ. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 1986;46:310–6.PubMed
8.
go back to reference Lühr I, Friedl A, Overath T, Tholey A, Kunze T, Hilpert F, et al. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals. Cancer Lett. 2012;325:175–88.CrossRefPubMedPubMedCentral Lühr I, Friedl A, Overath T, Tholey A, Kunze T, Hilpert F, et al. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals. Cancer Lett. 2012;325:175–88.CrossRefPubMedPubMedCentral
9.
go back to reference Darcy KM, Zangani D, Shea-Eaton W, Shoemaker SF, Lee PP, Mead LH, et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2000;36:578–92.CrossRefPubMed Darcy KM, Zangani D, Shea-Eaton W, Shoemaker SF, Lee PP, Mead LH, et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2000;36:578–92.CrossRefPubMed
10.
go back to reference Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67:93–109.CrossRefPubMed Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67:93–109.CrossRefPubMed
11.
go back to reference van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11:387–400.CrossRefPubMed van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11:387–400.CrossRefPubMed
12.
go back to reference Makarem M, Spike BT, Dravis C, Kannan N, Wahl GM, Eaves CJ. Stem cells and the developing mammary gland. J Mammary Gland Biol Neoplasia. 2013;18:209–19.CrossRefPubMedPubMedCentral Makarem M, Spike BT, Dravis C, Kannan N, Wahl GM, Eaves CJ. Stem cells and the developing mammary gland. J Mammary Gland Biol Neoplasia. 2013;18:209–19.CrossRefPubMedPubMedCentral
13.
go back to reference Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 2008;319:617–20.CrossRefPubMedPubMedCentral Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 2008;319:617–20.CrossRefPubMedPubMedCentral
14.
go back to reference Bishop CL, Bergin AM, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC, et al. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16INK4A. Mol Cell. 2010;40:533–47.CrossRefPubMed Bishop CL, Bergin AM, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC, et al. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16INK4A. Mol Cell. 2010;40:533–47.CrossRefPubMed
15.
go back to reference Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, et al. Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1. Oncogene. 2010;29:2262–71.CrossRefPubMed Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, et al. Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1. Oncogene. 2010;29:2262–71.CrossRefPubMed
16.
go back to reference Zhang Y, Smolen P, Baxter DA, Byrne JH. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: computational analysis. Learn Mem. 2010;17:428–39.CrossRefPubMedPubMedCentral Zhang Y, Smolen P, Baxter DA, Byrne JH. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: computational analysis. Learn Mem. 2010;17:428–39.CrossRefPubMedPubMedCentral
17.
go back to reference Annab LA, Terry L, Cable PL, Brady J, Stampfer MR, Barrett JC, et al. Establishment and characterization of a breast cell strain containing a BRCA1 185delAG mutation. Gynecol Oncol. 2000;77:121–8.CrossRefPubMed Annab LA, Terry L, Cable PL, Brady J, Stampfer MR, Barrett JC, et al. Establishment and characterization of a breast cell strain containing a BRCA1 185delAG mutation. Gynecol Oncol. 2000;77:121–8.CrossRefPubMed
18.
go back to reference Horikawa I, Cable PL, Mazur SJ, Appella E, Afshari CA, Barrett JC. Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell. 2002;13:2585–97.CrossRefPubMedPubMedCentral Horikawa I, Cable PL, Mazur SJ, Appella E, Afshari CA, Barrett JC. Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell. 2002;13:2585–97.CrossRefPubMedPubMedCentral
19.
go back to reference Bayani J, Squire J. Multi-color FISH techniques. Curr Protoc Cell Biol. 2004;24:Chapter 22:Unit 22.5. Bayani J, Squire J. Multi-color FISH techniques. Curr Protoc Cell Biol. 2004;24:Chapter 22:Unit 22.5.
20.
go back to reference Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.CrossRefPubMed Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.CrossRefPubMed
21.
go back to reference Poon SS, Wong JT, Saunders DN, Ma QC, McKinney S, Fee J, et al. Intensity calibration and automated cell cycle gating for high-throughput image-based siRNA screens of mammalian cells. Cytometry A. 2008;73:904–17.CrossRefPubMed Poon SS, Wong JT, Saunders DN, Ma QC, McKinney S, Fee J, et al. Intensity calibration and automated cell cycle gating for high-throughput image-based siRNA screens of mammalian cells. Cytometry A. 2008;73:904–17.CrossRefPubMed
22.
go back to reference Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.PubMed Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.PubMed
23.
go back to reference Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.CrossRefPubMed Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.CrossRefPubMed
24.
25.
go back to reference Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentral Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentral
26.
go back to reference Benjamini HY. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J Roy Stat Soc Stat Soc. 1995;57:289–300. Benjamini HY. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J Roy Stat Soc Stat Soc. 1995;57:289–300.
27.
go back to reference Harrington DP, Fleming TR. A class of rank test procedures for censored survival-data. Biometrika. 1982;69:553–66.CrossRef Harrington DP, Fleming TR. A class of rank test procedures for censored survival-data. Biometrika. 1982;69:553–66.CrossRef
30.
go back to reference Roy S, Gascard P, Dumont N, Zhao J, Pan D, Petrie S, et al. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci U S A. 2013;110:4598–603.CrossRefPubMedPubMedCentral Roy S, Gascard P, Dumont N, Zhao J, Pan D, Petrie S, et al. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci U S A. 2013;110:4598–603.CrossRefPubMedPubMedCentral
31.
go back to reference Kampstra P. Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw. 2008;28:Code Snippet 1.CrossRef Kampstra P. Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw. 2008;28:Code Snippet 1.CrossRef
32.
go back to reference Raouf A, Brown L, Vrcelj N, To K, Kwok W, Huntsman D, et al. Genomic instability of human mammary epithelial cells overexpressing a truncated form of EMSY. J Natl Cancer Inst. 2005;97:1302–6.CrossRefPubMed Raouf A, Brown L, Vrcelj N, To K, Kwok W, Huntsman D, et al. Genomic instability of human mammary epithelial cells overexpressing a truncated form of EMSY. J Natl Cancer Inst. 2005;97:1302–6.CrossRefPubMed
33.
go back to reference Hammond SL, Ham RG, Stampfer MR. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984;81:5435–9.CrossRefPubMedPubMedCentral Hammond SL, Ham RG, Stampfer MR. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984;81:5435–9.CrossRefPubMedPubMedCentral
34.
go back to reference Lasfargues EY, Moore DH. A method for the continuous cultivation of mammary epithelium. In Vitro. 1971;7:21–5.CrossRefPubMed Lasfargues EY, Moore DH. A method for the continuous cultivation of mammary epithelium. In Vitro. 1971;7:21–5.CrossRefPubMed
35.
go back to reference White MT, Hu AS, Hamamoto ST, Nandi S. In vitro analysis of proliferating epithelial cell populations from the mouse mammary gland: fibroblast-free growth and serial passage. In Vitro. 1978;14:271–81.CrossRefPubMed White MT, Hu AS, Hamamoto ST, Nandi S. In vitro analysis of proliferating epithelial cell populations from the mouse mammary gland: fibroblast-free growth and serial passage. In Vitro. 1978;14:271–81.CrossRefPubMed
36.
go back to reference Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 1992;89:9064–8.CrossRefPubMedPubMedCentral Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 1992;89:9064–8.CrossRefPubMedPubMedCentral
37.
38.
go back to reference Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature. 2004;428:427–31.CrossRefPubMed Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature. 2004;428:427–31.CrossRefPubMed
39.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef
41.
go back to reference Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.CrossRefPubMed Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.CrossRefPubMed
42.
go back to reference Harburg GC, Hinck L. Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia. 2011;16:257–70.CrossRefPubMedPubMedCentral Harburg GC, Hinck L. Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia. 2011;16:257–70.CrossRefPubMedPubMedCentral
43.
go back to reference Yang J, Balakrishnan A, Hamamoto S, Beattie CW, Das Gupta TK, Wellings SR, et al. Different mitogenic and phenotypic responses of human breast epithelial cells grown in two versus three dimensions. Exp Cell Res. 1986;167:563–9.CrossRefPubMed Yang J, Balakrishnan A, Hamamoto S, Beattie CW, Das Gupta TK, Wellings SR, et al. Different mitogenic and phenotypic responses of human breast epithelial cells grown in two versus three dimensions. Exp Cell Res. 1986;167:563–9.CrossRefPubMed
44.
go back to reference Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A. 1998;95:14821–6.CrossRefPubMedPubMedCentral Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A. 1998;95:14821–6.CrossRefPubMedPubMedCentral
45.
go back to reference Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell. 2010;21:219–31.CrossRefPubMedPubMedCentral Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell. 2010;21:219–31.CrossRefPubMedPubMedCentral
46.
go back to reference Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 2009;15:539–50. A published erratum appears in. Cancer Cell. 2009;16:172.CrossRef Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 2009;15:539–50. A published erratum appears in. Cancer Cell. 2009;16:172.CrossRef
47.
go back to reference Stoker M, Perryman M, Eeles R. Clonal analysis of morphological phenotype in cultured mammary epithelial cells from human milk. Proc R Soc Lond B Biol Sci. 1982;215:231–40.CrossRefPubMed Stoker M, Perryman M, Eeles R. Clonal analysis of morphological phenotype in cultured mammary epithelial cells from human milk. Proc R Soc Lond B Biol Sci. 1982;215:231–40.CrossRefPubMed
48.
go back to reference Edwards PA, Brooks IM, Monaghan P. Expression of epithelial antigens in primary cultures of normal human breast analysed with monoclonal antibodies. Differentiation. 1984;25:247–58.CrossRefPubMed Edwards PA, Brooks IM, Monaghan P. Expression of epithelial antigens in primary cultures of normal human breast analysed with monoclonal antibodies. Differentiation. 1984;25:247–58.CrossRefPubMed
49.
go back to reference O’Hare MJ, Ormerod MG, Monaghan P, Lane EB, Gusterson BA. Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation. 1991;46:209–21.CrossRefPubMed O’Hare MJ, Ormerod MG, Monaghan P, Lane EB, Gusterson BA. Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation. 1991;46:209–21.CrossRefPubMed
50.
go back to reference Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63:201–13.CrossRefPubMed Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63:201–13.CrossRefPubMed
51.
go back to reference Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.CrossRefPubMedPubMedCentral Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.CrossRefPubMedPubMedCentral
52.
go back to reference Ellis MJ, Ding L, Shen D, Luo JQ, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486:353–60.PubMedPubMedCentral Ellis MJ, Ding L, Shen D, Luo JQ, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486:353–60.PubMedPubMedCentral
53.
go back to reference Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral
54.
go back to reference Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef
55.
go back to reference Dawson SJ, Rueda OM, Aparicio S, Caldas C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013;32:617–28.CrossRefPubMedPubMedCentral Dawson SJ, Rueda OM, Aparicio S, Caldas C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013;32:617–28.CrossRefPubMedPubMedCentral
56.
go back to reference Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. 2008;57:Chapter 10:Unit 10.11. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. 2008;57:Chapter 10:Unit 10.11.
57.
go back to reference Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91:355–8.PubMedPubMedCentral Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91:355–8.PubMedPubMedCentral
58.
go back to reference Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007;446:815–9.CrossRefPubMed Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007;446:815–9.CrossRefPubMed
59.
go back to reference Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol. 2008;10:1027–38.CrossRefPubMed Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol. 2008;10:1027–38.CrossRefPubMed
60.
go back to reference Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303:848–51.CrossRefPubMed Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303:848–51.CrossRefPubMed
63.
go back to reference Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.CrossRefPubMed Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.CrossRefPubMed
64.
go back to reference Beaulieu LM, Church FC. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1. Exp Cell Res. 2007;313:677–87.CrossRefPubMed Beaulieu LM, Church FC. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1. Exp Cell Res. 2007;313:677–87.CrossRefPubMed
65.
go back to reference Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One. 2009;4:e8377.CrossRefPubMedPubMedCentral Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One. 2009;4:e8377.CrossRefPubMedPubMedCentral
66.
go back to reference Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell. 2003;4:371–82.CrossRefPubMed Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell. 2003;4:371–82.CrossRefPubMed
67.
go back to reference Strizzi L, Mancino M, Bianco C, Raafat A, Gonzales M, Booth BW, et al. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J Cell Physiol. 2008;216:824–34.CrossRefPubMedPubMedCentral Strizzi L, Mancino M, Bianco C, Raafat A, Gonzales M, Booth BW, et al. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J Cell Physiol. 2008;216:824–34.CrossRefPubMedPubMedCentral
68.
go back to reference Underwood JM, Imbalzano KM, Weaver VM, Fischer AH, Imbalzano AN, Nickerson JA. The ultrastructure of MCF-10A acini. J Cell Physiol. 2006;208:141–8.CrossRefPubMed Underwood JM, Imbalzano KM, Weaver VM, Fischer AH, Imbalzano AN, Nickerson JA. The ultrastructure of MCF-10A acini. J Cell Physiol. 2006;208:141–8.CrossRefPubMed
69.
go back to reference Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.CrossRefPubMed Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.CrossRefPubMed
Metadata
Title
A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation
Authors
Angela Burleigh
Steven McKinney
Jazmine Brimhall
Damian Yap
Peter Eirew
Steven Poon
Viola Ng
Adrian Wan
Leah Prentice
Lois Annab
J Carl Barrett
Carlos Caldas
Connie Eaves
Samuel Aparicio
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2015
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-014-0510-y

Other articles of this Issue 1/2015

Breast Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine