Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | Acute Respiratory Distress-Syndrome | Review

Surfactant therapies for pediatric and neonatal ARDS: ESPNIC expert consensus opinion for future research steps

Authors: Daniele De Luca, Paola Cogo, Martin C. Kneyber, Paolo Biban, Malcolm Grace Semple, Jesus Perez-Gil, Giorgio Conti, Pierre Tissieres, Peter C. Rimensberger

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Pediatric (PARDS) and neonatal (NARDS) acute respiratory distress syndrome have different age-specific characteristics and definitions. Trials on surfactant for ARDS in children and neonates have been performed well before the PARDS and NARDS definitions and yielded conflicting results. This is mainly due to heterogeneity in study design reflecting historic lack of pathobiology knowledge. We reviewed the available clinical and preclinical data to create an expert consensus aiming to inform future research steps and advance the knowledge in this area. Eight trials investigated the use of surfactant for ARDS in children and ten in neonates, respectively. There were improvements in oxygenation (7/8 trials in children, 7/10 in neonates) and mortality (3/8 trials in children, 1/10 in neonates) improved. Trials were heterogeneous for patients’ characteristics, surfactant type and administration strategy. Key pathobiological concepts were missed in study design. Consensus with strong agreement was reached on four statements:
1.
There are sufficient preclinical and clinical data to support targeted research on surfactant therapies for PARDS and NARDS. Studies should be performed according to the currently available definitions and considering recent pathobiology knowledge.
 
2.
PARDS and NARDS should be considered as syndromes and should be pre-clinically studied according to key characteristics, such as direct or indirect (primary or secondary) nature, clinical severity, infectious or non-infectious origin or patients’ age.
 
3.
Explanatory should be preferred over pragmatic design for future trials on PARDS and NARDS.
 
4.
Different clinical outcomes need to be chosen for PARDS and NARDS, according to the trial phase and design, trigger type, severity class and/or surfactant treatment policy.
 
We advocate for further well-designed preclinical and clinical studies to investigate the use of surfactant for PARDS and NARDS following these principles.
Appendix
Available only for authorised users
Literature
1.
go back to reference De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5:657–66.PubMedCrossRef De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5:657–66.PubMedCrossRef
2.
go back to reference Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology. Pediatr Crit Care Med. 2015;16:S23-40.PubMedCrossRef Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology. Pediatr Crit Care Med. 2015;16:S23-40.PubMedCrossRef
3.
go back to reference De Luca D. Personalising care of acute respiratory distress syndrome according to patients’ age. Lancet Respir Med. 2019;7:100–1.PubMedCrossRef De Luca D. Personalising care of acute respiratory distress syndrome according to patients’ age. Lancet Respir Med. 2019;7:100–1.PubMedCrossRef
4.
go back to reference Aggarwal NR, King LS, D’Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 2014;306:L709–25.PubMedPubMedCentralCrossRef Aggarwal NR, King LS, D’Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 2014;306:L709–25.PubMedPubMedCentralCrossRef
5.
go back to reference Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax. 2016;71:462–73.PubMedCrossRef Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax. 2016;71:462–73.PubMedCrossRef
6.
go back to reference Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin. 2011;27:525–59.PubMedPubMedCentralCrossRef Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin. 2011;27:525–59.PubMedPubMedCentralCrossRef
7.
go back to reference De Luca D, Piastra M, Chidini G, Tissieres P, Calderini E, et al. On behalf of Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC). The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med. 2013;39:2083–91. De Luca D, Piastra M, Chidini G, Tissieres P, Calderini E, et al. On behalf of Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC). The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med. 2013;39:2083–91.
8.
go back to reference Khemani RG. Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, et al. Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7:115–128. Erratum in: Lancet Respir Med. 2018 Nov 13: Erratum in: Lancet Respir Med. 2019;7:e12. Khemani RG. Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, et al. Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7:115–128. Erratum in: Lancet Respir Med. 2018 Nov 13: Erratum in: Lancet Respir Med. 2019;7:e12.
9.
go back to reference Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury: similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190:258–65.PubMed Kneyber MCJ, Zhang H, Slutsky AS. Ventilator-induced lung injury: similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190:258–65.PubMed
10.
go back to reference Günther A, Ruppert C, Schmidt R, Markart P, Grimminger F, Walmrath D, et al. Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res. 2001;2:353–64.PubMedPubMedCentralCrossRef Günther A, Ruppert C, Schmidt R, Markart P, Grimminger F, Walmrath D, et al. Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res. 2001;2:353–64.PubMedPubMedCentralCrossRef
11.
go back to reference De Luca D, Lopez-Rodriguez E, Minucci A, Vendittelli F, Gentile L, Stival E, et al. Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants. Crit Care. 2013;17:R163.PubMedPubMedCentralCrossRef De Luca D, Lopez-Rodriguez E, Minucci A, Vendittelli F, Gentile L, Stival E, et al. Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants. Crit Care. 2013;17:R163.PubMedPubMedCentralCrossRef
12.
go back to reference Touqui L, Arbibe L. A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today. 1999;5:244–9.PubMedCrossRef Touqui L, Arbibe L. A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today. 1999;5:244–9.PubMedCrossRef
13.
go back to reference Cogo PE, Toffolo GM, Ori C, Vianello A, Chierici M, Gucciardi A, et al. Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two-compartment model. Respir Res. 2007;8:13.PubMedPubMedCentralCrossRef Cogo PE, Toffolo GM, Ori C, Vianello A, Chierici M, Gucciardi A, et al. Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two-compartment model. Respir Res. 2007;8:13.PubMedPubMedCentralCrossRef
14.
go back to reference Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147:1539–48.PubMedCrossRef Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147:1539–48.PubMedCrossRef
15.
go back to reference Moussa MD, Santonocito C, Fagnoul D, Donadello K, Pradier O, Gaussem P, et al. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med. 2015;41:231–8.PubMedCrossRef Moussa MD, Santonocito C, Fagnoul D, Donadello K, Pradier O, Gaussem P, et al. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med. 2015;41:231–8.PubMedCrossRef
16.
go back to reference Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.PubMedPubMedCentralCrossRef Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.PubMedPubMedCentralCrossRef
17.
go back to reference Yehya N, Keim G, Thomas NJ. Subtypes of pediatric acute respiratory distress syndrome have different predictors of mortality. Intensive Care Med. 2018;44:1230–9.PubMedPubMedCentralCrossRef Yehya N, Keim G, Thomas NJ. Subtypes of pediatric acute respiratory distress syndrome have different predictors of mortality. Intensive Care Med. 2018;44:1230–9.PubMedPubMedCentralCrossRef
18.
go back to reference Santhakumaran S, Gordon A, Prevost AT, O’Kane C, McAuley DF, Shankar-Hari M. Heterogeneity of treatment effect by baseline risk of mortality in critically ill patients: re-analysis of three recent sepsis and ARDS randomised controlled trials. Crit Care. 2019;23:156.PubMedPubMedCentralCrossRef Santhakumaran S, Gordon A, Prevost AT, O’Kane C, McAuley DF, Shankar-Hari M. Heterogeneity of treatment effect by baseline risk of mortality in critically ill patients: re-analysis of three recent sepsis and ARDS randomised controlled trials. Crit Care. 2019;23:156.PubMedPubMedCentralCrossRef
19.
go back to reference Shankar-Hari M, Rubenfeld GD. Population enrichment for critical care trials: phenotypes and differential outcomes. Curr Opin Crit Care. 2019;25:489–97.PubMedCrossRef Shankar-Hari M, Rubenfeld GD. Population enrichment for critical care trials: phenotypes and differential outcomes. Curr Opin Crit Care. 2019;25:489–97.PubMedCrossRef
20.
go back to reference Tamburro RF, Kneyber MCJ. Pulmonary specific ancillary treatment for pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:S61-72.PubMedCrossRef Tamburro RF, Kneyber MCJ. Pulmonary specific ancillary treatment for pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:S61-72.PubMedCrossRef
21.
go back to reference Kneyber MCJ, de Luca D, Calderini E, Jarreau P-H, Javouhey E, et al. on behalf of the section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43:1764–80. Kneyber MCJ, de Luca D, Calderini E, Jarreau P-H, Javouhey E, et al. on behalf of the section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43:1764–80.
22.
go back to reference Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2015;(5):CD000144. Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2015;(5):CD000144.
23.
go back to reference Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1725–1739. Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1725–1739.
24.
go back to reference Quaker Foundations of Leadership. A comparison of Quaker-based consensus and Robert’s rules of order. Richmond (VI) USA: Earlham College; 1999. Quaker Foundations of Leadership. A comparison of Quaker-based consensus and Robert’s rules of order. Richmond (VI) USA: Earlham College; 1999.
25.
go back to reference Thomas NJ, Spear D, Wasserman E, Pon S, Markovitz B, Singh AR, et al. CALIPSO: a randomized controlled trial of calfactant for acute lung injury in pediatric stem cell and oncology patients. Biol Blood Marrow Transplant. 2018;24:2479–86.PubMedCrossRef Thomas NJ, Spear D, Wasserman E, Pon S, Markovitz B, Singh AR, et al. CALIPSO: a randomized controlled trial of calfactant for acute lung injury in pediatric stem cell and oncology patients. Biol Blood Marrow Transplant. 2018;24:2479–86.PubMedCrossRef
26.
go back to reference Tridente A, De Martino L, De Luca D. Porcine vs bovine surfactant therapy for preterm neonates with RDS: systematic review with biological plausibility and pragmatic meta-analysis of respiratory outcomes. Respir Res. 2019;20(1):28.PubMedPubMedCentralCrossRef Tridente A, De Martino L, De Luca D. Porcine vs bovine surfactant therapy for preterm neonates with RDS: systematic review with biological plausibility and pragmatic meta-analysis of respiratory outcomes. Respir Res. 2019;20(1):28.PubMedPubMedCentralCrossRef
27.
go back to reference Willson DF, Zaritsky A, Bauman LA, Dockery K, James RL, Conrad D, et al. Instillation of calf lung surfactant extract (calfactant) is beneficial in pediatric acute hypoxemic respiratory failure. Crit Care Med. 1999;27:188–95.PubMedCrossRef Willson DF, Zaritsky A, Bauman LA, Dockery K, James RL, Conrad D, et al. Instillation of calf lung surfactant extract (calfactant) is beneficial in pediatric acute hypoxemic respiratory failure. Crit Care Med. 1999;27:188–95.PubMedCrossRef
28.
go back to reference Möller JC, Schaible T, Roll C, Schiffmann J-H, Bindl L, Schrod L, et al. Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 2003;29:437–46.PubMedPubMedCentralCrossRef Möller JC, Schaible T, Roll C, Schiffmann J-H, Bindl L, Schrod L, et al. Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 2003;29:437–46.PubMedPubMedCentralCrossRef
29.
go back to reference Yapıcıoğlu H, Yıldızdaş D, Bayram İ, Sertdemir Y, Yılmaz HL. The use of surfactant in children with acute respiratory distress syndrome: efficacy in terms of oxygenation, ventilation and mortality. Pulm Pharm Ther. 2003;16:327–33.CrossRef Yapıcıoğlu H, Yıldızdaş D, Bayram İ, Sertdemir Y, Yılmaz HL. The use of surfactant in children with acute respiratory distress syndrome: efficacy in terms of oxygenation, ventilation and mortality. Pulm Pharm Ther. 2003;16:327–33.CrossRef
30.
go back to reference Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293:470–6.PubMedCrossRef Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293:470–6.PubMedCrossRef
31.
go back to reference Thomas NJ, Guardia CG, Moya FR, Cheifetz IM, Markovitz B, Cruces P, et al. A pilot, randomized, controlled clinical trial of lucinactant, a peptide-containing synthetic surfactant, in infants with acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13:646–53.PubMedCrossRef Thomas NJ, Guardia CG, Moya FR, Cheifetz IM, Markovitz B, Cruces P, et al. A pilot, randomized, controlled clinical trial of lucinactant, a peptide-containing synthetic surfactant, in infants with acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13:646–53.PubMedCrossRef
32.
go back to reference Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, et al. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14:657–65.PubMedCrossRef Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, et al. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14:657–65.PubMedCrossRef
33.
go back to reference Rodríguez-Moya VS, Gallo-Borrero CM, Santos-Áreas D, Prince-Martínez IA, Díaz-Casañas E, López-Herce CJ. Exogenous surfactant and alveolar recruitment in the treatment of the acute respiratory distress syndrome: Treatment of the ARDS. Clin Resp J. 2017;11:1032–9.CrossRef Rodríguez-Moya VS, Gallo-Borrero CM, Santos-Áreas D, Prince-Martínez IA, Díaz-Casañas E, López-Herce CJ. Exogenous surfactant and alveolar recruitment in the treatment of the acute respiratory distress syndrome: Treatment of the ARDS. Clin Resp J. 2017;11:1032–9.CrossRef
34.
go back to reference Lotze A, Knight GR, Martin GR, Bulas DI, Hull WM, O’Donnell RM, et al. Improved pulmonary outcome after exogenous surfactant therapy for respiratory failure in term infants requiring extracorporeal membrane oxygenation. J Pediatr. 1993;122:261–8.PubMedCrossRef Lotze A, Knight GR, Martin GR, Bulas DI, Hull WM, O’Donnell RM, et al. Improved pulmonary outcome after exogenous surfactant therapy for respiratory failure in term infants requiring extracorporeal membrane oxygenation. J Pediatr. 1993;122:261–8.PubMedCrossRef
35.
go back to reference Findlay RD, Taeusch HW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics. 1996;97:48–52.PubMed Findlay RD, Taeusch HW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics. 1996;97:48–52.PubMed
36.
go back to reference Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group. J Pediatr. 1998;132:40–7. Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group. J Pediatr. 1998;132:40–7.
37.
go back to reference Chinese Collaborative Study Group for Neonatal Respiratory Diseases. Treatment of severe meconium aspiration syndrome with porcine surfactant: a multicentre, randomized, controlled trial. Acta Paediatr. 2005;94:896–902. Chinese Collaborative Study Group for Neonatal Respiratory Diseases. Treatment of severe meconium aspiration syndrome with porcine surfactant: a multicentre, randomized, controlled trial. Acta Paediatr. 2005;94:896–902.
38.
go back to reference Chang M, Lu H-Y, Xiang H, Lan H-P. Clinical effects of different ways of mechanical ventilation combined with pulmonary surfactant in treatment of acute lung injury/acute respiratory distress syndrome in neonates: a comparative analysis. Chin J Contemp Pediatr. 2016;18:1069–74. Chang M, Lu H-Y, Xiang H, Lan H-P. Clinical effects of different ways of mechanical ventilation combined with pulmonary surfactant in treatment of acute lung injury/acute respiratory distress syndrome in neonates: a comparative analysis. Chin J Contemp Pediatr. 2016;18:1069–74.
39.
go back to reference Wiswell TE, Knight GR, Finer NN, Donn SM, Desai H, Walsh WF, et al. A multicenter, randomized, controlled trial comparing surfaxin (lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics. 2002;109:1081–7.PubMedCrossRef Wiswell TE, Knight GR, Finer NN, Donn SM, Desai H, Walsh WF, et al. A multicenter, randomized, controlled trial comparing surfaxin (lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics. 2002;109:1081–7.PubMedCrossRef
40.
go back to reference Gadzinowski J, Kowalska K, Vidyasagar D. Treatment of MAS with PPHN using combined therapy: SLL, bolus surfactant and iNO. J Perinatol. 2008;28:S56-66.PubMedCrossRef Gadzinowski J, Kowalska K, Vidyasagar D. Treatment of MAS with PPHN using combined therapy: SLL, bolus surfactant and iNO. J Perinatol. 2008;28:S56-66.PubMedCrossRef
41.
go back to reference Dargaville PA, Copnell B, Mills JF, Haron I, Lee JKF, Tingay DG, et al. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr. 2011;158:383–9.PubMedCrossRef Dargaville PA, Copnell B, Mills JF, Haron I, Lee JKF, Tingay DG, et al. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr. 2011;158:383–9.PubMedCrossRef
42.
go back to reference Bandiya P, Nangia S, Saili A. Surfactant lung lavage vs. standard care in the treatment of meconium aspiration syndrome: a randomized trial. J Trop Pediatr. 2019;65:114–21. Bandiya P, Nangia S, Saili A. Surfactant lung lavage vs. standard care in the treatment of meconium aspiration syndrome: a randomized trial. J Trop Pediatr. 2019;65:114–21.
43.
go back to reference Rong Z, Mo L, Pan R, Zhu X, Cheng H, Li M, et al. Bovine surfactant in the treatment of pneumonia-induced–neonatal acute respiratory distress syndrome (NARDS) in neonates beyond 34 weeks of gestation: a multicentre, randomized, assessor-blinded, placebo-controlled trial. Eur J Pediatr. 2020 Oct 21:1–9. doi: https://doi.org/10.1007/s00431-020-03821-2. Epub ahead of print. Rong Z, Mo L, Pan R, Zhu X, Cheng H, Li M, et al. Bovine surfactant in the treatment of pneumonia-induced–neonatal acute respiratory distress syndrome (NARDS) in neonates beyond 34 weeks of gestation: a multicentre, randomized, assessor-blinded, placebo-controlled trial. Eur J Pediatr. 2020 Oct 21:1–9. doi: https://​doi.​org/​10.​1007/​s00431-020-03821-2. Epub ahead of print.
44.
go back to reference Tamburro RF, Thomas NJ, Pon S, Jacobs BR, DiCarlo JV, Markovitz BP, et al. Post hoc analysis of calfactant use in immunocompromised children with acute lung injury: Impact and feasibility of further clinical trials. Pediatr Crit Care Med. 2008;9:459–64.PubMedCrossRef Tamburro RF, Thomas NJ, Pon S, Jacobs BR, DiCarlo JV, Markovitz BP, et al. Post hoc analysis of calfactant use in immunocompromised children with acute lung injury: Impact and feasibility of further clinical trials. Pediatr Crit Care Med. 2008;9:459–64.PubMedCrossRef
45.
go back to reference ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
46.
go back to reference De Luca D, Shankar-Aguilera S, Autilio C, Raschetti R, Vedovelli L, Fitting C, et al. Surfactant-secreted phospholipase A 2 interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol. 2020;319:L95-104.PubMedCrossRef De Luca D, Shankar-Aguilera S, Autilio C, Raschetti R, Vedovelli L, Fitting C, et al. Surfactant-secreted phospholipase A 2 interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol. 2020;319:L95-104.PubMedCrossRef
47.
go back to reference Autilio C, Echaide M, Shankar-Aguilera S, Bragado R, Amidani D, Salomone F, et al. Surfactant injury in the early phase of severe meconium aspiration syndrome. Am J Respir Cell Mol Biol. 2020;63:327–37.PubMedCrossRef Autilio C, Echaide M, Shankar-Aguilera S, Bragado R, Amidani D, Salomone F, et al. Surfactant injury in the early phase of severe meconium aspiration syndrome. Am J Respir Cell Mol Biol. 2020;63:327–37.PubMedCrossRef
48.
go back to reference Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol. 2019;10:1345. Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol. 2019;10:1345.
49.
go back to reference Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93:1331–9.PubMedCrossRef Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93:1331–9.PubMedCrossRef
51.
go back to reference Elsayed YN, Hinton M, Graham R, Dakshinamurti S. Lung ultrasound predicts histological lung injury in a neonatal model of acute respiratory distress syndrome. Pediatr Pulmonol. 2020;55:2913–23.PubMedCrossRef Elsayed YN, Hinton M, Graham R, Dakshinamurti S. Lung ultrasound predicts histological lung injury in a neonatal model of acute respiratory distress syndrome. Pediatr Pulmonol. 2020;55:2913–23.PubMedCrossRef
52.
go back to reference Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–54.PubMedCrossRef Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–54.PubMedCrossRef
53.
go back to reference Bindl L, Buderus S, Dahlem P, Demirakca S, Goldner M, Huth R, et al. Gender-based differences in children with sepsis and ARDS: The ESPNIC ARDS Database Group. Intensive Care Med. 2003;29:1770–3.PubMedCrossRef Bindl L, Buderus S, Dahlem P, Demirakca S, Goldner M, Huth R, et al. Gender-based differences in children with sepsis and ARDS: The ESPNIC ARDS Database Group. Intensive Care Med. 2003;29:1770–3.PubMedCrossRef
54.
go back to reference Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, et al. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest. 2017;151:755–63.PubMedCrossRef Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, et al. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest. 2017;151:755–63.PubMedCrossRef
55.
go back to reference Wong JJ-M, Phan HP, Phumeetham S, Ong JSM, Chor YK, Qian S, et al. Risk stratification in pediatric acute respiratory distress syndrome: a multicenter observational study. Crit Care Med. 2017;45:1820–8. Wong JJ-M, Phan HP, Phumeetham S, Ong JSM, Chor YK, Qian S, et al. Risk stratification in pediatric acute respiratory distress syndrome: a multicenter observational study. Crit Care Med. 2017;45:1820–8.
56.
go back to reference Grotberg JB, Filoche M, Willson DF, Raghavendran K, Notter RH. Did reduced alveolar delivery of surfactant contribute to negative results in adults with acute respiratory distress syndrome? Am J Resp Crit Care Med. 2017;195:538–40.PubMedCrossRefPubMedCentral Grotberg JB, Filoche M, Willson DF, Raghavendran K, Notter RH. Did reduced alveolar delivery of surfactant contribute to negative results in adults with acute respiratory distress syndrome? Am J Resp Crit Care Med. 2017;195:538–40.PubMedCrossRefPubMedCentral
57.
58.
go back to reference De Luca D, Harrison DA, Peters MJ. ‘Lumping or splitting’ in paediatric acute respiratory distress syndrome (PARDS). Intensive Care Med. 2018;44:1548–50.PubMedCrossRef De Luca D, Harrison DA, Peters MJ. ‘Lumping or splitting’ in paediatric acute respiratory distress syndrome (PARDS). Intensive Care Med. 2018;44:1548–50.PubMedCrossRef
59.
go back to reference Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic–explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62:464–75.PubMedCrossRef Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic–explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62:464–75.PubMedCrossRef
61.
go back to reference Taut FJH, Rippin G, Schenk P, Findlay G, Wurst W, Häfner D, et al. A search for subgroups of patients with ARDS who may benefit from surfactant replacement therapy. Chest. 2008;134:724–32.PubMedCrossRef Taut FJH, Rippin G, Schenk P, Findlay G, Wurst W, Häfner D, et al. A search for subgroups of patients with ARDS who may benefit from surfactant replacement therapy. Chest. 2008;134:724–32.PubMedCrossRef
62.
go back to reference De Luca D, Piastra M, Tosi F, Pulitano S, Mancino A, Genovese O, et al. Pharmacological therapies for pediatric and neonatal ALI/ARDS: an evidence-based review. Curr Drug Targets. 2012;13:906–16.PubMedCrossRef De Luca D, Piastra M, Tosi F, Pulitano S, Mancino A, Genovese O, et al. Pharmacological therapies for pediatric and neonatal ALI/ARDS: an evidence-based review. Curr Drug Targets. 2012;13:906–16.PubMedCrossRef
63.
go back to reference De Luca D, Vázquez-Sánchez S, Minucci A, Echaide M, Piastra M, Conti G, et al. Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. Eur Resp J. 2014;44:1708–10.CrossRef De Luca D, Vázquez-Sánchez S, Minucci A, Echaide M, Piastra M, Conti G, et al. Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. Eur Resp J. 2014;44:1708–10.CrossRef
64.
go back to reference Ravasio A, Cruz A, Pérez-Gil J, Haller T. High-throughput evaluation of pulmonary surfactant adsorption and surface film formation. J Lipid Res. 2008;49:2479–88.PubMedCrossRef Ravasio A, Cruz A, Pérez-Gil J, Haller T. High-throughput evaluation of pulmonary surfactant adsorption and surface film formation. J Lipid Res. 2008;49:2479–88.PubMedCrossRef
65.
go back to reference Autilio C, Echaide M, Benachi A, Marfaing-Koka A, Capoluongo ED, Pérez-Gil J, et al. A noninvasive surfactant adsorption test predicting the need for surfactant therapy in preterm infants treated with continuous positive airway pressure. J Pediatr. 2017;182:66–73.PubMedCrossRef Autilio C, Echaide M, Benachi A, Marfaing-Koka A, Capoluongo ED, Pérez-Gil J, et al. A noninvasive surfactant adsorption test predicting the need for surfactant therapy in preterm infants treated with continuous positive airway pressure. J Pediatr. 2017;182:66–73.PubMedCrossRef
66.
go back to reference Dahmer MK, Flori H, Sapru A, Kohne J, Weeks HM, Curley MAQ, et al. Surfactant Protein D is associated with severe pediatric ARDS, prolonged ventilation, and death in children with acute respiratory failure. Chest. 2020;158:1027–35.PubMedCrossRefPubMedCentral Dahmer MK, Flori H, Sapru A, Kohne J, Weeks HM, Curley MAQ, et al. Surfactant Protein D is associated with severe pediatric ARDS, prolonged ventilation, and death in children with acute respiratory failure. Chest. 2020;158:1027–35.PubMedCrossRefPubMedCentral
67.
go back to reference Ward SL, Dahmer MK, Weeks HM, Sapru A, Quasney MW, Curley MAQ, et al. Association of patient weight status with plasma surfactant protein D, a biomarker of alveolar epithelial injury, in children with acute respiratory failure. Pediatr Pulmonol. 2020;55:2730–6.PubMedCrossRefPubMedCentral Ward SL, Dahmer MK, Weeks HM, Sapru A, Quasney MW, Curley MAQ, et al. Association of patient weight status with plasma surfactant protein D, a biomarker of alveolar epithelial injury, in children with acute respiratory failure. Pediatr Pulmonol. 2020;55:2730–6.PubMedCrossRefPubMedCentral
68.
go back to reference De Luca D, Autilio C, Pezza L, Shankar-Aguilera S, Tingay D, Carnielli V. Personalised medicine for the management of RDS in preterm neonates. Neonatology. 2021 in press; De Luca D, Autilio C, Pezza L, Shankar-Aguilera S, Tingay D, Carnielli V. Personalised medicine for the management of RDS in preterm neonates. Neonatology. 2021 in press;
69.
go back to reference Germain N, Aballéa S, Toumi M. Measuring health-related quality of life in young children: how far have we come? J Mark Access Health Policy. 2019;22:7:1618661. Erratum in: J Mark Access Health Policy. 2019;7:1626572. Germain N, Aballéa S, Toumi M. Measuring health-related quality of life in young children: how far have we come? J Mark Access Health Policy. 2019;22:7:1618661. Erratum in: J Mark Access Health Policy. 2019;7:1626572.
70.
go back to reference Weed DL, Hursting SD. Biologic plausibility in causal inference: current method and practice. Am J Epidemiol. 1998;147:415–25.PubMedCrossRef Weed DL, Hursting SD. Biologic plausibility in causal inference: current method and practice. Am J Epidemiol. 1998;147:415–25.PubMedCrossRef
71.
go back to reference Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef
72.
go back to reference Contentin L, Ehrmann S, Giraudeau B. Heterogeneity in the definition of mechanical ventilation duration and ventilator-free days. Am J Resp Crit Care Med. 2014;189:998–1002.PubMedCrossRef Contentin L, Ehrmann S, Giraudeau B. Heterogeneity in the definition of mechanical ventilation duration and ventilator-free days. Am J Resp Crit Care Med. 2014;189:998–1002.PubMedCrossRef
73.
go back to reference Enhörning G, Robertson B. Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics. 1972;50:58–66.PubMed Enhörning G, Robertson B. Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics. 1972;50:58–66.PubMed
74.
go back to reference Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:55–9.PubMedCrossRef Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:55–9.PubMedCrossRef
75.
go back to reference Newth CJ, Stretton M, Deakers TW, Hammer J. Assessment of pulmonary function in the early phase of ARDS in pediatric patients. Pediatr Pulmonol. 1997;23:169–75.PubMedCrossRef Newth CJ, Stretton M, Deakers TW, Hammer J. Assessment of pulmonary function in the early phase of ARDS in pediatric patients. Pediatr Pulmonol. 1997;23:169–75.PubMedCrossRef
76.
go back to reference Wirbelauer J, Speer CP. The role of surfactant treatment in preterm infants and term newborns with acute respiratory distress syndrome. J Perinatol. 2009;29(Suppl 2):S18-22.PubMedCrossRef Wirbelauer J, Speer CP. The role of surfactant treatment in preterm infants and term newborns with acute respiratory distress syndrome. J Perinatol. 2009;29(Suppl 2):S18-22.PubMedCrossRef
77.
go back to reference Faix RG, Viscardi RM, DiPietro MA, Nicks JJ. Adult respiratory distress syndrome in full-term newborns. Pediatrics. 1989;83:971–6.PubMed Faix RG, Viscardi RM, DiPietro MA, Nicks JJ. Adult respiratory distress syndrome in full-term newborns. Pediatrics. 1989;83:971–6.PubMed
78.
go back to reference Ashbaugh DG, Boyd Bigelow D, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;290:319–23.CrossRef Ashbaugh DG, Boyd Bigelow D, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;290:319–23.CrossRef
79.
go back to reference Lachmann B. Animal models and clinical pilot studies of surfactant replacement in adult respiratory distress syndrome. Eur Respir J Suppl. 1989;3:98s–103s.PubMed Lachmann B. Animal models and clinical pilot studies of surfactant replacement in adult respiratory distress syndrome. Eur Respir J Suppl. 1989;3:98s–103s.PubMed
80.
go back to reference Marraro G. Use of surfactant in respiratory diseases in neonates and infants. Cah Anesthesiol. 1994;42:159–66 [article in French]. Marraro G. Use of surfactant in respiratory diseases in neonates and infants. Cah Anesthesiol. 1994;42:159–66 [article in French].
81.
go back to reference Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta. 2009;1792(10):941–53.PubMedCrossRef Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta. 2009;1792(10):941–53.PubMedCrossRef
82.
go back to reference Arbibe L, Koumanov K, Vial D, Rougeot C, Faure G, Havet N, et al. Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest. 1998;102:1152–60.PubMedPubMedCentralCrossRef Arbibe L, Koumanov K, Vial D, Rougeot C, Faure G, Havet N, et al. Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest. 1998;102:1152–60.PubMedPubMedCentralCrossRef
83.
go back to reference Berger A, Havet N, Vial D, Arbibe L, Dumarey C, Watson ML, et al. Dioleylphosphatidylglycerol inhibits the expression of type II phospholipase A2 in macrophages. Am J Respir Crit Care Med. 1999;159:613–8.PubMedCrossRef Berger A, Havet N, Vial D, Arbibe L, Dumarey C, Watson ML, et al. Dioleylphosphatidylglycerol inhibits the expression of type II phospholipase A2 in macrophages. Am J Respir Crit Care Med. 1999;159:613–8.PubMedCrossRef
84.
go back to reference Pilon AL. Rationale for the development of recombinant Human CC10 as a therapeutic for inflammatory and fibrotic disease. Ann N Y Acad Sci. 2000;923:280–99.PubMedCrossRef Pilon AL. Rationale for the development of recombinant Human CC10 as a therapeutic for inflammatory and fibrotic disease. Ann N Y Acad Sci. 2000;923:280–99.PubMedCrossRef
85.
go back to reference Kishore U, Bernal AL, Kamran MF, Saxena S, Singh M, Sarma PU, et al. Surfactant proteins SP-A and SP-D in human health and disease. Arch Immunol Ther Exp (Warsz). 2005;53:399–417. Kishore U, Bernal AL, Kamran MF, Saxena S, Singh M, Sarma PU, et al. Surfactant proteins SP-A and SP-D in human health and disease. Arch Immunol Ther Exp (Warsz). 2005;53:399–417.
86.
go back to reference von Bismarck P, Klemm K, García Wistädt C-F, Winoto-Morbach S, Schütze S, Krause MF. Selective NF-κB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model. Pulm Pharm Ther. 2009;22:297–304.CrossRef von Bismarck P, Klemm K, García Wistädt C-F, Winoto-Morbach S, Schütze S, Krause MF. Selective NF-κB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model. Pulm Pharm Ther. 2009;22:297–304.CrossRef
87.
go back to reference Preuß S, Scheiermann J, Stadelmann S, Omam FD, Winoto-Morbach S, Lex D, et al. 18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulm Pharm Ther. 2014;28:25–34.CrossRef Preuß S, Scheiermann J, Stadelmann S, Omam FD, Winoto-Morbach S, Lex D, et al. 18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulm Pharm Ther. 2014;28:25–34.CrossRef
88.
go back to reference De Luca D, Minucci A, Trias J, Tripodi D, Conti G, Zuppi C, et al. Varespladib inhibits secretory phospholipase A2 in bronchoalveolar lavage of different types of neonatal lung injury. J Clin Pharmacol. 2012;52:729–37.PubMedCrossRef De Luca D, Minucci A, Trias J, Tripodi D, Conti G, Zuppi C, et al. Varespladib inhibits secretory phospholipase A2 in bronchoalveolar lavage of different types of neonatal lung injury. J Clin Pharmacol. 2012;52:729–37.PubMedCrossRef
89.
go back to reference De Luca D, Minucci A, Piastra M, Cogo PE, Vendittelli F, Marzano L, et al. Ex vivo effect of varespladib on secretory phospholipase A2 Alveolar activity in infants with ARDS. PLoS ONE. 2012;7:e47066.PubMedPubMedCentralCrossRef De Luca D, Minucci A, Piastra M, Cogo PE, Vendittelli F, Marzano L, et al. Ex vivo effect of varespladib on secretory phospholipase A2 Alveolar activity in infants with ARDS. PLoS ONE. 2012;7:e47066.PubMedPubMedCentralCrossRef
90.
91.
go back to reference Triggiani M, Granata F, Petraroli A, Loffredo S, Frattini A, Staiano RI, et al. Inhibition of secretory phospholipase A2-induced cytokine production in human lung macrophages by budesonide. Int Arch Allergy Immunol. 2009;150:144–55.PubMedCrossRef Triggiani M, Granata F, Petraroli A, Loffredo S, Frattini A, Staiano RI, et al. Inhibition of secretory phospholipase A2-induced cytokine production in human lung macrophages by budesonide. Int Arch Allergy Immunol. 2009;150:144–55.PubMedCrossRef
92.
go back to reference Venkataraman R, Kamaluddeen M, Hasan SU, Robertson HL, Lodha A. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants: a systematic review and meta-analysis. Pediatr Pulmonol. 2017;52:968–75.PubMedCrossRef Venkataraman R, Kamaluddeen M, Hasan SU, Robertson HL, Lodha A. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants: a systematic review and meta-analysis. Pediatr Pulmonol. 2017;52:968–75.PubMedCrossRef
93.
go back to reference Foligno S, De Luca D. Porcine versus bovine surfactant therapy for RDS in preterm neonates: pragmatic meta-analysis and review of physiopathological plausibility of the effects on extra-pulmonary outcomes. Respir Res. 2020;21(1):8.PubMedPubMedCentralCrossRef Foligno S, De Luca D. Porcine versus bovine surfactant therapy for RDS in preterm neonates: pragmatic meta-analysis and review of physiopathological plausibility of the effects on extra-pulmonary outcomes. Respir Res. 2020;21(1):8.PubMedPubMedCentralCrossRef
94.
go back to reference Cogo PE, Facco M, Simonato M, Verlato G, Rondina C, Baritussio A, et al. Dosing of porcine surfactant: effect on kinetics and gas exchange in respiratory distress syndrome. Pediatrics. 2009;124:e950–7.PubMedCrossRef Cogo PE, Facco M, Simonato M, Verlato G, Rondina C, Baritussio A, et al. Dosing of porcine surfactant: effect on kinetics and gas exchange in respiratory distress syndrome. Pediatrics. 2009;124:e950–7.PubMedCrossRef
95.
go back to reference Cogo PE, Facco M, Simonato M, De Luca D, De Terlizi F, Rizzotti U, et al. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med. 2011;37:510–7.PubMedCrossRef Cogo PE, Facco M, Simonato M, De Luca D, De Terlizi F, Rizzotti U, et al. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med. 2011;37:510–7.PubMedCrossRef
96.
go back to reference Sun Y, Wang Y-Q, Yang R, Zhu J-J, Le Y-Y, Zhong J-G, et al. Exogenous porcine surfactants increase the infiltration of leukocytes in the lung of rats. Pulm Pharm Ther. 2009;22:253–9.CrossRef Sun Y, Wang Y-Q, Yang R, Zhu J-J, Le Y-Y, Zhong J-G, et al. Exogenous porcine surfactants increase the infiltration of leukocytes in the lung of rats. Pulm Pharm Ther. 2009;22:253–9.CrossRef
97.
go back to reference Schrod L, Hornemann F, von Stockhausen HB. Chemiluminescence activity of phagocytes from tracheal aspirates of premature infants after surfactant therapy. Acta Paediatr. 1996;85:719–23.PubMedCrossRef Schrod L, Hornemann F, von Stockhausen HB. Chemiluminescence activity of phagocytes from tracheal aspirates of premature infants after surfactant therapy. Acta Paediatr. 1996;85:719–23.PubMedCrossRef
98.
go back to reference Wolfler A, Piastra M, Amigoni A, Santuz P, Gitto E, Rossetti E, et al. A shared protocol for porcine surfactant use in pediatric acute respiratory distress syndrome: a feasibility study. BMC Pediatr. 2019;19:203.PubMedPubMedCentralCrossRef Wolfler A, Piastra M, Amigoni A, Santuz P, Gitto E, Rossetti E, et al. A shared protocol for porcine surfactant use in pediatric acute respiratory distress syndrome: a feasibility study. BMC Pediatr. 2019;19:203.PubMedPubMedCentralCrossRef
99.
go back to reference Biban P, Conti G, Wolfler AM, Carlassara S, Gitto E, Rulli I, et al. Efficacy and safety of exogenous surfactant therapy in patients under 12 months of age invasively ventilated for severe bronchiolitis (SURFABRON): protocol for a multicentre, randomised, double-blind, controlled, non-profit trial. BMJ Open. 2020;10:e038780.PubMedPubMedCentralCrossRef Biban P, Conti G, Wolfler AM, Carlassara S, Gitto E, Rulli I, et al. Efficacy and safety of exogenous surfactant therapy in patients under 12 months of age invasively ventilated for severe bronchiolitis (SURFABRON): protocol for a multicentre, randomised, double-blind, controlled, non-profit trial. BMJ Open. 2020;10:e038780.PubMedPubMedCentralCrossRef
100.
go back to reference Choi HJ, Hahn S, Lee J, Park B-J, Lee SM, Kim H-S, et al. Surfactant LAVAGE THERAPY FOR MECONIUM ASPIRATION SYNDROME: A SYSTEMATIC REVIEW AND META-ANALYSIS. Neonatology. 2012;101:183–91.PubMedCrossRef Choi HJ, Hahn S, Lee J, Park B-J, Lee SM, Kim H-S, et al. Surfactant LAVAGE THERAPY FOR MECONIUM ASPIRATION SYNDROME: A SYSTEMATIC REVIEW AND META-ANALYSIS. Neonatology. 2012;101:183–91.PubMedCrossRef
101.
go back to reference Henn R, Fiori RM, Fiori HH, Pereira MR, Colvero MO, Ramos Garcia PC, et al. Surfactant with and without bronchoalveolar lavage in an experimental model of meconium aspiration syndrome. J Perinat Med. 2016;44:685–9.PubMedCrossRef Henn R, Fiori RM, Fiori HH, Pereira MR, Colvero MO, Ramos Garcia PC, et al. Surfactant with and without bronchoalveolar lavage in an experimental model of meconium aspiration syndrome. J Perinat Med. 2016;44:685–9.PubMedCrossRef
Metadata
Title
Surfactant therapies for pediatric and neonatal ARDS: ESPNIC expert consensus opinion for future research steps
Authors
Daniele De Luca
Paola Cogo
Martin C. Kneyber
Paolo Biban
Malcolm Grace Semple
Jesus Perez-Gil
Giorgio Conti
Pierre Tissieres
Peter C. Rimensberger
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03489-6

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue