Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Acute Kidney Injury | Research

Renal replacement therapy is independently associated with a lower risk of death in patients with severe acute kidney injury treated with targeted temperature management after out-of-hospital cardiac arrest

Authors: Yoon Hee Choi, Dong Hoon Lee, Je Hyeok Oh, Jung Hee Wee, Tae Chang Jang, Seung Pill Choi, Kyu Nam Park, on behalf of the Korean Hypothermia Network Investigators

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

The effect of renal replacement therapy (RRT) on the outcomes of severe acute kidney injury (AKI) after out-of-hospital cardiac arrest (OHCA) is uncertain. This study aimed to evaluate the association of RRT with 6-month mortality in patients with severe AKI treated with targeted temperature management (TTM) after OHCA.

Methods

This was a retrospective analysis of a prospectively collected multicentre observational cohort study that included adult OHCA patients treated with TTM across 22 hospitals in South Korea between October 2015 and December 2018. AKI was diagnosed using the Kidney Disease: Improving Global Outcomes criteria. The primary outcome was 6-month mortality and the secondary outcome was cerebral performance category (CPC) at 6 months. Multivariate Cox regression analysis was performed to define the role of RRT in stage 3 AKI.

Results

Among 10,426 patients with OHCA, 1373 were treated with TTM. After excluding those who died within 48 h of return of spontaneous circulation (ROSC) and those with pre-arrest chronic kidney disease, our study cohort comprised 1063 patients. AKI developed in 590 (55.5%) patients and 223 (21.0%) had stage 3 AKI. Among them, 115 (51.6%) were treated with RRT. The most common treatment modality among RRT patients was continuous renal replacement therapy (111 [96.5%]), followed by intermittent haemodialysis (4 [3.5%]). The distributions of CPC (1–5) at 6 months for the non-RRT vs. the RRT group were 3/108 (2.8%) vs. 12/115 (10.4%) for CPC 1, 0/108 (0.0%) vs. 1/115 (0.9%) for CPC 2, 1/108 (0.9%) vs. 3/115 (2.6%) for CPC 3, 6/108 (5.6%) vs. 6/115 (5.2%) for CPC 4, and 98/108 (90.7%) vs. 93/115 (80.9%) for CPC 5, respectively (P = 0.01). The RRT group had significantly lower 6-month mortality than the non-RRT group (93/115 [81%] vs. 98/108 [91%], P = 0.04). Multivariate Cox regression analyses showed that RRT was independently associated with a lower risk of death in patients with stage 3 AKI (hazard ratio, 0.569 [95% confidence interval, 0.377–0.857, P = 0.01]).

Conclusion

Dialysis interventions were independently associated with a lower risk of death in patients with stage 3 AKI treated with TTM after OHCA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sandroni C, Dell'anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 2016;82(9):989–99.PubMed Sandroni C, Dell'anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 2016;82(9):989–99.PubMed
2.
go back to reference Oh JH, Lee DH, Cho IS, Youn CS, Lee BK, Wee JH, Cha KC, Chae MK, Shin J, Korean Hypothermia Network I. Association between acute kidney injury and neurological outcome or death at 6months in out-of-hospital cardiac arrest: a prospective, multicenter, observational cohort study. J Crit Care. 2019;54:197–204.CrossRef Oh JH, Lee DH, Cho IS, Youn CS, Lee BK, Wee JH, Cha KC, Chae MK, Shin J, Korean Hypothermia Network I. Association between acute kidney injury and neurological outcome or death at 6months in out-of-hospital cardiac arrest: a prospective, multicenter, observational cohort study. J Crit Care. 2019;54:197–204.CrossRef
3.
go back to reference Geri G, Guillemet L, Dumas F, Charpentier J, Antona M, Lemiale V, Bougouin W, Lamhaut L, Mira JP, Vinsonneau C, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. 2015;41(7):1273–80.CrossRef Geri G, Guillemet L, Dumas F, Charpentier J, Antona M, Lemiale V, Bougouin W, Lamhaut L, Mira JP, Vinsonneau C, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. 2015;41(7):1273–80.CrossRef
4.
go back to reference Beitland S, Nakstad ER, Staer-Jensen H, Draegni T, Andersen GO, Jacobsen D, Brunborg C, Waldum-Grevbo B, Sunde K. Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand. 2016;60(8):1170–81.CrossRef Beitland S, Nakstad ER, Staer-Jensen H, Draegni T, Andersen GO, Jacobsen D, Brunborg C, Waldum-Grevbo B, Sunde K. Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand. 2016;60(8):1170–81.CrossRef
5.
go back to reference Park YS, Choi YH, Oh JH, Cho IS, Cha KC, Choi BS, You JS. Recovery from acute kidney injury as a potent predictor of survival and good neurological outcome at discharge after out-of-hospital cardiac arrest. Crit Care. 2019;23(1):256.CrossRef Park YS, Choi YH, Oh JH, Cho IS, Cha KC, Choi BS, You JS. Recovery from acute kidney injury as a potent predictor of survival and good neurological outcome at discharge after out-of-hospital cardiac arrest. Crit Care. 2019;23(1):256.CrossRef
6.
go back to reference Tujjar O, Mineo G, Dell'Anna A, Poyatos-Robles B, Donadello K, Scolletta S, Vincent JL, Taccone FS. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.CrossRef Tujjar O, Mineo G, Dell'Anna A, Poyatos-Robles B, Donadello K, Scolletta S, Vincent JL, Taccone FS. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.CrossRef
7.
go back to reference Storm C, Krannich A, Schachtner T, Engels M, Schindler R, Kahl A, Otto NM. Impact of acute kidney injury on neurological outcome and long-term survival after cardiac arrest - a 10year observational follow up. J Crit Care. 2018;47:254–9.CrossRef Storm C, Krannich A, Schachtner T, Engels M, Schindler R, Kahl A, Otto NM. Impact of acute kidney injury on neurological outcome and long-term survival after cardiac arrest - a 10year observational follow up. J Crit Care. 2018;47:254–9.CrossRef
8.
go back to reference Hasslacher J, Barbieri F, Harler U, Ulmer H, Forni LG, Bellmann R, Joannidis M. Acute kidney injury and mild therapeutic hypothermia in patients after cardiopulmonary resuscitation - a post hoc analysis of a prospective observational trial. Crit Care. 2018;22(1):154.CrossRef Hasslacher J, Barbieri F, Harler U, Ulmer H, Forni LG, Bellmann R, Joannidis M. Acute kidney injury and mild therapeutic hypothermia in patients after cardiopulmonary resuscitation - a post hoc analysis of a prospective observational trial. Crit Care. 2018;22(1):154.CrossRef
9.
go back to reference Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.CrossRef Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.CrossRef
10.
go back to reference Ghoshal S, Yang V, Brodie D, Radhakrishnan J, Roh DJ, Park S, Claassen J, Agarwal S. In-hospital survival and neurological recovery among patients requiring renal replacement therapy in post-cardiac arrest period. Kidney Int Rep. 2019;4(5):674–8.CrossRef Ghoshal S, Yang V, Brodie D, Radhakrishnan J, Roh DJ, Park S, Claassen J, Agarwal S. In-hospital survival and neurological recovery among patients requiring renal replacement therapy in post-cardiac arrest period. Kidney Int Rep. 2019;4(5):674–8.CrossRef
11.
go back to reference Winther-Jensen M, Kjaergaard J, Lassen JF, Kober L, Torp-Pedersen C, Hansen SM, Lippert F, Kragholm K, Christensen EF, Hassager C. Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J. 2018;52(5):238–43.CrossRef Winther-Jensen M, Kjaergaard J, Lassen JF, Kober L, Torp-Pedersen C, Hansen SM, Lippert F, Kragholm K, Christensen EF, Hassager C. Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J. 2018;52(5):238–43.CrossRef
13.
go back to reference Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute dialysis quality initiative w: acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRef Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute dialysis quality initiative w: acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRef
14.
go back to reference Wyllie J, Bruinenberg J, Roehr CC, Rudiger M, Trevisanuto D, Urlesberger B. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation. 2015;95:249–63.CrossRef Wyllie J, Bruinenberg J, Roehr CC, Rudiger M, Trevisanuto D, Urlesberger B. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation. 2015;95:249–63.CrossRef
15.
go back to reference Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.CrossRef Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.CrossRef
17.
go back to reference Gibney N, Hoste E, Burdmann EA, Bunchman T, Kher V, Viswanathan R, Mehta RL, Ronco C. Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol. 2008;3(3):876–80.CrossRef Gibney N, Hoste E, Burdmann EA, Bunchman T, Kher V, Viswanathan R, Mehta RL, Ronco C. Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol. 2008;3(3):876–80.CrossRef
18.
go back to reference Miyamoto Y, Iwagami M, Aso S, Yasunaga H, Matsui H, Fushimi K, Hamasaki Y, Nangaku M, Doi K. Temporal change in characteristics and outcomes of acute kidney injury on renal replacement therapy in intensive care units: analysis of a nationwide administrative database in Japan, 2007-2016. Crit Care. 2019;23(1):172.CrossRef Miyamoto Y, Iwagami M, Aso S, Yasunaga H, Matsui H, Fushimi K, Hamasaki Y, Nangaku M, Doi K. Temporal change in characteristics and outcomes of acute kidney injury on renal replacement therapy in intensive care units: analysis of a nationwide administrative database in Japan, 2007-2016. Crit Care. 2019;23(1):172.CrossRef
19.
go back to reference Elseviers MM, Lins RL, Van der Niepen P, Hoste E, Malbrain ML, Damas P. Devriendt J, investigators S: renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit Care. 2010;14(6):R221.CrossRef Elseviers MM, Lins RL, Van der Niepen P, Hoste E, Malbrain ML, Damas P. Devriendt J, investigators S: renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit Care. 2010;14(6):R221.CrossRef
20.
go back to reference De Corte W, Dhondt A, Vanholder R, De Waele J, Decruyenaere J, Sergoyne V, Vanhalst J, Claus S, Hoste EA. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Crit Care. 2016;20(1):256.CrossRef De Corte W, Dhondt A, Vanholder R, De Waele J, Decruyenaere J, Sergoyne V, Vanhalst J, Claus S, Hoste EA. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Crit Care. 2016;20(1):256.CrossRef
21.
go back to reference Schneider AG, Bagshaw SM. Effects of renal replacement therapy on renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127(1–4):35–41.CrossRef Schneider AG, Bagshaw SM. Effects of renal replacement therapy on renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127(1–4):35–41.CrossRef
22.
go back to reference Ma Y, Huang L, Zhang L, Yu H, Liu B. Association between body mass index and clinical outcomes of patients after cardiac arrest and resuscitation: a meta-analysis. Am J Emerg Med. 2018;36(7):1270–9.CrossRef Ma Y, Huang L, Zhang L, Yu H, Liu B. Association between body mass index and clinical outcomes of patients after cardiac arrest and resuscitation: a meta-analysis. Am J Emerg Med. 2018;36(7):1270–9.CrossRef
23.
go back to reference Danziger J, Chen KP, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ. Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med. 2016;44(2):328–34.CrossRef Danziger J, Chen KP, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ. Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med. 2016;44(2):328–34.CrossRef
24.
go back to reference Bhardwaj A, Ikeda DJ, Grossestreuer AV, Sheak KR, Delfin G, Layden T, Abella BS, Leary M. Factors associated with re-arrest following initial resuscitation from cardiac arrest. Resuscitation. 2017;111:90–5.CrossRef Bhardwaj A, Ikeda DJ, Grossestreuer AV, Sheak KR, Delfin G, Layden T, Abella BS, Leary M. Factors associated with re-arrest following initial resuscitation from cardiac arrest. Resuscitation. 2017;111:90–5.CrossRef
25.
go back to reference Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, Jeung KW, Oh SH, Choi SP, Shin JH, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.CrossRef Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, Jeung KW, Oh SH, Choi SP, Shin JH, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283.CrossRef
26.
go back to reference Zeiner A, Sunder-Plassmann G, Sterz F, Holzer M, Losert H, Laggner AN, Mullner M. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation. 2004;60(3):253–61.CrossRef Zeiner A, Sunder-Plassmann G, Sterz F, Holzer M, Losert H, Laggner AN, Mullner M. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation. 2004;60(3):253–61.CrossRef
Metadata
Title
Renal replacement therapy is independently associated with a lower risk of death in patients with severe acute kidney injury treated with targeted temperature management after out-of-hospital cardiac arrest
Authors
Yoon Hee Choi
Dong Hoon Lee
Je Hyeok Oh
Jung Hee Wee
Tae Chang Jang
Seung Pill Choi
Kyu Nam Park
on behalf of the Korean Hypothermia Network Investigators
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-2822-x

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue