Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Shock | Research

Variability in usual care fluid resuscitation and risk-adjusted outcomes for mechanically ventilated patients in shock

Authors: Jason N. Mansoori, Walter Linde-Zwirble, Peter C. Hou, Edward P. Havranek, Ivor S. Douglas

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Rationale

There remains significant controversy regarding the optimal approach to fluid resuscitation for patients in shock. The magnitude of care variability in shock resuscitation, the confounding effects of disease severity and comorbidity, and the relative impact on sepsis survival are poorly understood.

Objective

To evaluate usual care variability and determine the differential effect of observed and predicted fluid resuscitation volumes on risk-adjusted hospital mortality for mechanically ventilated patients in shock.

Methods

We performed a retrospective outcome analysis of mechanically ventilated patients admitted to intensive care units using the 2013 Premier Hospital Database (Premier, Inc.). Observed and predicted hospital mortality were evaluated by observed and predicted day 1 fluid administration, using the difference in predicted and observed outcomes to adjust for disease severity between groups. Both predictive models were validated using a second large administrative database (Truven Health Analytics Inc.). Secondary outcomes included duration of mechanical ventilation, hospital and ICU length of stay, and cost.

Results

Among 33,831 patients, observed hospital mortality was incrementally higher than predicted for each additional liter of day 1 fluid beginning at 7 L (40.9% vs. 37.2%, p = 0.008). Compared to patients that received expected (± 1.5 L predicted) day 1 fluid volumes, greater-than-expected fluid resuscitation was associated with increased risk-adjusted hospital mortality (52.3% vs. 45.0%, p < 0.0001) among all patients with shock and among a subgroup of shock patients with comorbid conditions predictive of lower fluid volume administration (47.1% vs. 41.5%, p < 0.0001). However, in patients with shock but without such conditions, both greater-than-expected (57.5% vs. 49.2%, p < 0.0001) and less-than-expected (52.1% vs. 49.2%, p = 0.037) day 1 fluid resuscitation were associated with increased risk-adjusted hospital mortality.

Conclusions

Highly variable day 1 fluid resuscitation was associated with a non-uniform impact on risk-adjusted hospital mortality among distinct subgroups of mechanically ventilated patients with shock. These findings support closer evaluation of fluid resuscitation strategies that include broadly applied fluid volume targets in the early phase of shock resuscitation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bikdeli B, Strait KM, Dharmarajan K, Li SX, Mody P, Partovian C, et al. Intravenous fluids in acute decompensated heart failure. JACC Heart Fail. 2015;3(2):127–33.CrossRef Bikdeli B, Strait KM, Dharmarajan K, Li SX, Mody P, Partovian C, et al. Intravenous fluids in acute decompensated heart failure. JACC Heart Fail. 2015;3(2):127–33.CrossRef
2.
go back to reference Lee J, de Louw E, Niemi M, Nelson R, Mark RG, Celi LA, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277(4):468–77.CrossRef Lee J, de Louw E, Niemi M, Nelson R, Mark RG, Celi LA, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277(4):468–77.CrossRef
3.
go back to reference Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.CrossRef Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.CrossRef
4.
go back to reference Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80.CrossRef Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80.CrossRef
5.
go back to reference Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43(1):68–73.CrossRef Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43(1):68–73.CrossRef
6.
go back to reference Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17(1):109.CrossRef Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17(1):109.CrossRef
7.
go back to reference Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.CrossRef Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.CrossRef
8.
go back to reference Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.CrossRef Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.CrossRef
9.
go back to reference Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.CrossRef Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.CrossRef
10.
go back to reference Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRef Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRef
11.
go back to reference Corl KA, Prodromou M, Merchant RC, Gareen I, Marks S, Banerjee D, et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med. 2019;47(7):951–9.CrossRef Corl KA, Prodromou M, Merchant RC, Gareen I, Marks S, Banerjee D, et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med. 2019;47(7):951–9.CrossRef
12.
go back to reference Self WH, Semler MW, Bellomo R, Brown SM, BP dB, Exline MC, et al. Liberal versus restrictive intravenous fluid therapy for early septic shock: rationale for a randomized trial. Ann Emerg Med. 2018;72(4):457–66.CrossRef Self WH, Semler MW, Bellomo R, Brown SM, BP dB, Exline MC, et al. Liberal versus restrictive intravenous fluid therapy for early septic shock: rationale for a randomized trial. Ann Emerg Med. 2018;72(4):457–66.CrossRef
13.
go back to reference Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.CrossRef Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.CrossRef
14.
go back to reference de Oliveira FS, Freitas FG, Ferreira EM, de Castro I, Bafi AT, de Azevedo LC, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30(1):97–101.CrossRef de Oliveira FS, Freitas FG, Ferreira EM, de Castro I, Bafi AT, de Azevedo LC, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30(1):97–101.CrossRef
15.
go back to reference Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.CrossRef Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.CrossRef
16.
go back to reference Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.CrossRef Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.CrossRef
17.
go back to reference Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.CrossRef Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.CrossRef
18.
go back to reference Yang M, Mehta HB, Bali V, Gupta P, Wang X, Johnson ML, et al. Which risk-adjustment index performs better in predicting 30-day mortality? A systematic review and meta-analysis. J Eval Clin Pract. 2015;21(2):292–9.CrossRef Yang M, Mehta HB, Bali V, Gupta P, Wang X, Johnson ML, et al. Which risk-adjustment index performs better in predicting 30-day mortality? A systematic review and meta-analysis. J Eval Clin Pract. 2015;21(2):292–9.CrossRef
19.
go back to reference Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD. Assessment of the performance of five intensive care scoring models within a large Scottish database. Crit Care Med. 2000;28(6):1820–7.CrossRef Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD. Assessment of the performance of five intensive care scoring models within a large Scottish database. Crit Care Med. 2000;28(6):1820–7.CrossRef
20.
go back to reference Poses RM, McClish DK, Smith WR, Bekes C, Scott WE. Prediction of survival of critically ill patients by admission comorbidity. J Clin Epidemiol. 1996;49(7):743–7.CrossRef Poses RM, McClish DK, Smith WR, Bekes C, Scott WE. Prediction of survival of critically ill patients by admission comorbidity. J Clin Epidemiol. 1996;49(7):743–7.CrossRef
21.
go back to reference Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRef Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRef
22.
go back to reference Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.CrossRef Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.CrossRef
23.
go back to reference Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.CrossRef Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.CrossRef
Metadata
Title
Variability in usual care fluid resuscitation and risk-adjusted outcomes for mechanically ventilated patients in shock
Authors
Jason N. Mansoori
Walter Linde-Zwirble
Peter C. Hou
Edward P. Havranek
Ivor S. Douglas
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Shock
Shock
Care
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-2734-9

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue