Skip to main content
Top
Published in: Critical Care 1/2021

01-12-2021 | Severe Acute Respiratory Syndrome Coronavirus | Review

SARS-CoV-2 pneumonia—receptor binding and lung immunopathology: a narrative review

Authors: Maria Clara Saad Menezes, Diego Vinicius Santinelli Pestana, Gustavo Rosa Gameiro, Luiz Fernando Ferraz da Silva, Ėlodie Baron, Jean-Jacques Rouby, José Otavio Costa Auler Jr

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

The current pandemic of COVID-19 caused thousands of deaths and healthcare professionals struggle to properly manage infected patients. This review summarizes information about SARS-CoV-2 receptor binding dynamics and intricacies, lung autopsy findings, immune response patterns, evidence-based explanations for the immune response, and COVID-19-associated hypercoagulability.
Literature
3.
go back to reference Yuntao W, Wenzhe H, Yaowei H, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020 21–27 March; 395(10228): 949–950 Yuntao W, Wenzhe H, Yaowei H, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020 21–27 March; 395(10228): 949–950
4.
go back to reference Gattinoni L, Chiumello D, Cairon P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.PubMedPubMedCentralCrossRef Gattinoni L, Chiumello D, Cairon P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.PubMedPubMedCentralCrossRef
5.
go back to reference Xu L, Xiaochun M. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24:198.CrossRef Xu L, Xiaochun M. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24:198.CrossRef
8.
go back to reference Salvatore G, Mirabella L, Murgolo F, et al. Effects of positive end-expiratory pressure in “High Compliance” Severe Acute Respiratory Syndrome Coronavirus 2 Acute Respiratory Distress Syndrome, Critical Care Medicine: September 15, 2020—Volume Online First - Issue - doi: https://doi.org/10.1097/CCM.0000000000004640 Salvatore G, Mirabella L, Murgolo F, et al. Effects of positive end-expiratory pressure in “High Compliance” Severe Acute Respiratory Syndrome Coronavirus 2 Acute Respiratory Distress Syndrome, Critical Care Medicine: September 15, 2020—Volume Online First - Issue - doi: https://​doi.​org/​10.​1097/​CCM.​0000000000004640​
10.
go back to reference Richman D, Whitley R, Hayden F. Clinical virology. 4th ed. Washington: ASM Press; 2016.CrossRef Richman D, Whitley R, Hayden F. Clinical virology. 4th ed. Washington: ASM Press; 2016.CrossRef
11.
go back to reference Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323:707–8.PubMedCrossRef Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323:707–8.PubMedCrossRef
12.
go back to reference Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.CrossRefPubMed Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.CrossRefPubMed
13.
14.
go back to reference Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39.PubMedPubMedCentralCrossRef Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39.PubMedPubMedCentralCrossRef
15.
go back to reference Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 180:934–3. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 180:934–3.
16.
go back to reference Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51.PubMedPubMedCentralCrossRef Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51.PubMedPubMedCentralCrossRef
17.
19.
20.
go back to reference Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.CrossRefPubMedPubMedCentral Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658–64.PubMedPubMedCentralCrossRef Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658–64.PubMedPubMedCentralCrossRef
24.
go back to reference Shulla A, Heald-Sargent T, Subramanya G, et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85:873–82.PubMedCrossRef Shulla A, Heald-Sargent T, Subramanya G, et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85:873–82.PubMedCrossRef
25.
go back to reference Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742.PubMedPubMedCentralCrossRef Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742.PubMedPubMedCentralCrossRef
26.
go back to reference Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.PubMedPubMedCentralCrossRef
27.
go back to reference Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–13.PubMedPubMedCentralCrossRef Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–13.PubMedPubMedCentralCrossRef
28.
go back to reference Fox S, Akmatbekov A, Harbert L, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans, . Lancet Respir Med. 2020;8:682.CrossRef Fox S, Akmatbekov A, Harbert L, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans, . Lancet Respir Med. 2020;8:682.CrossRef
29.
go back to reference Ackermann M, Verleden S, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. NEJM. 2020;383:122–4.CrossRef Ackermann M, Verleden S, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. NEJM. 2020;383:122–4.CrossRef
30.
go back to reference Rouby JJ, Martin De Lassale E, Poete P et al. Nosocomial bronchopneumonia in the critically ill. Histologic and bacteriologic aspects. Am Rev Respir Dis. 1992;146:1059–66 Rouby JJ, Martin De Lassale E, Poete P et al. Nosocomial bronchopneumonia in the critically ill. Histologic and bacteriologic aspects. Am Rev Respir Dis. 1992;146:1059–66
31.
go back to reference Barton L, Duval E, Stroberg E, et al. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Path. 2020;153:725–33.PubMedCrossRef Barton L, Duval E, Stroberg E, et al. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Path. 2020;153:725–33.PubMedCrossRef
33.
go back to reference Monteiro RPA, Oliveira EP, Saldiva PHN, Dolhnikoff M. Duarte‐Neto AN; Brazilian Image Autopsy Study Group. Histological‐ultrasonographical correlation of pulmonary involvement in severe COVID‐19. Intensive Care Med. 2020; 46:1766–8. doi: https://doi.org/10.1007/s00134-020-06125-z. Monteiro RPA, Oliveira EP, Saldiva PHN, Dolhnikoff M. Duarte‐Neto AN; Brazilian Image Autopsy Study Group. Histological‐ultrasonographical correlation of pulmonary involvement in severe COVID‐19. Intensive Care Med. 2020; 46:1766–8. doi: https://​doi.​org/​10.​1007/​s00134-020-06125-z.
36.
37.
go back to reference Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15:700–4.PubMedPubMedCentralCrossRef Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15:700–4.PubMedPubMedCentralCrossRef
39.
go back to reference Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med. 2000;21:455.CrossRef Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med. 2000;21:455.CrossRef
43.
go back to reference Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Inter Med. 2020;172:629–32.CrossRef Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Inter Med. 2020;172:629–32.CrossRef
44.
go back to reference Su H, Yang M, Wan C, Yi LX, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–27.PubMedPubMedCentralCrossRef Su H, Yang M, Wan C, Yi LX, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–27.PubMedPubMedCentralCrossRef
46.
go back to reference Kerget B, Kerget F, Koçak AO, Kızıltunç A, Araz Ö, Uçar EY, et al. Are serum interleukin 6 and surfactant protein D levels associated with the clinical course of COVID-19? Lung. 2020;777–84. Kerget B, Kerget F, Koçak AO, Kızıltunç A, Araz Ö, Uçar EY, et al. Are serum interleukin 6 and surfactant protein D levels associated with the clinical course of COVID-19? Lung. 2020;777–84.
47.
go back to reference Mrozek S, Jabaudon M, Jaber S, Paugam-Burtz C, Lefrant J-Y, Rouby J-J, et al. Elevated plasma levels of sRAGE are associated with nonfocal CT-based lung imaging in patients with ARDS: a prospective multicenter study. Chest. 2016;150:998–1007.PubMedCrossRef Mrozek S, Jabaudon M, Jaber S, Paugam-Burtz C, Lefrant J-Y, Rouby J-J, et al. Elevated plasma levels of sRAGE are associated with nonfocal CT-based lung imaging in patients with ARDS: a prospective multicenter study. Chest. 2016;150:998–1007.PubMedCrossRef
48.
go back to reference Constantin JM, Jabaudon M, Lefrant JY, Jaber S, Quenot JP, Langeron O, et al.; AZUREA Network. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019 Oct;7(10):870–80. Constantin JM, Jabaudon M, Lefrant JY, Jaber S, Quenot JP, Langeron O, et al.; AZUREA Network. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019 Oct;7(10):870–80.
49.
go back to reference Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 2020;611–20. Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 2020;611–20.
50.
go back to reference Tong M, Jiang Y, Xia D, Xiong Y, Zheng Q, Chen F, et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J Infect Dis. 2020;894–8. Tong M, Jiang Y, Xia D, Xiong Y, Zheng Q, Chen F, et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J Infect Dis. 2020;894–8.
51.
go back to reference Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in china. NEJM. 2020;382:1708–20.PubMedCrossRef Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in china. NEJM. 2020;382:1708–20.PubMedCrossRef
52.
54.
go back to reference Cowland J, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273:11–28.PubMedCrossRef Cowland J, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273:11–28.PubMedCrossRef
55.
go back to reference Adrover J, Aroca-Crevillen A, Crainiciuc G, et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol. 2020;21:135–44.PubMedPubMedCentralCrossRef Adrover J, Aroca-Crevillen A, Crainiciuc G, et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol. 2020;21:135–44.PubMedPubMedCentralCrossRef
56.
go back to reference McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202:812–21.PubMedPubMedCentralCrossRef McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202:812–21.PubMedPubMedCentralCrossRef
58.
go back to reference Liu Q, Zhou Y, Yang Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;3:3–10.CrossRef Liu Q, Zhou Y, Yang Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;3:3–10.CrossRef
59.
go back to reference Chousterman B, Swirski F, Weber G. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28.CrossRefPubMed Chousterman B, Swirski F, Weber G. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28.CrossRefPubMed
60.
go back to reference Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.PubMedPubMedCentralCrossRef Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.PubMedPubMedCentralCrossRef
61.
go back to reference Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.PubMedCrossRef Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.PubMedCrossRef
63.
64.
go back to reference Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.PubMedPubMedCentralCrossRef Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.PubMedPubMedCentralCrossRef
67.
go back to reference Salvarani C, Dolci G, Massari M, et al. RCT-TCZ-COVID-19 Study Group. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized With COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med. 2020;20:e206615. Salvarani C, Dolci G, Massari M, et al. RCT-TCZ-COVID-19 Study Group. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized With COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med. 2020;20:e206615.
69.
go back to reference Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.PubMedPubMedCentralCrossRef Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.PubMedPubMedCentralCrossRef
70.
go back to reference Arico M, Danesino C, Pende D, et al. Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol. 2001;114:761–9.PubMedCrossRef Arico M, Danesino C, Pende D, et al. Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol. 2001;114:761–9.PubMedCrossRef
73.
go back to reference Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020;189:428–37.PubMedPubMedCentralCrossRef Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020;189:428–37.PubMedPubMedCentralCrossRef
75.
go back to reference Peteranderl C, Herold S. The impact of the interferon/TNF-related apoptosis-inducing ligand signaling axis on disease progression in respiratory viral infection and beyond. Front Immunol. 2017;8:313.PubMedPubMedCentral Peteranderl C, Herold S. The impact of the interferon/TNF-related apoptosis-inducing ligand signaling axis on disease progression in respiratory viral infection and beyond. Front Immunol. 2017;8:313.PubMedPubMedCentral
77.
go back to reference Teijaro J, Walsh K, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146:980–9.PubMedPubMedCentralCrossRef Teijaro J, Walsh K, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146:980–9.PubMedPubMedCentralCrossRef
78.
go back to reference Hui L, Liang L, Dingyu Z, Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:1517–20.CrossRef Hui L, Liang L, Dingyu Z, Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:1517–20.CrossRef
80.
go back to reference Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.CrossRefPubMed Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.CrossRefPubMed
81.
go back to reference Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–98.PubMedCrossRefPubMedCentral Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–98.PubMedCrossRefPubMedCentral
85.
go back to reference Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;S0735–1097(20):35218–9. Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;S0735–1097(20):35218–9.
86.
go back to reference Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18:1023–6.PubMedCrossRef Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18:1023–6.PubMedCrossRef
87.
go back to reference Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020; S0735-1097(20): 35008-7. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020; S0735-1097(20): 35008-7.
Metadata
Title
SARS-CoV-2 pneumonia—receptor binding and lung immunopathology: a narrative review
Authors
Maria Clara Saad Menezes
Diego Vinicius Santinelli Pestana
Gustavo Rosa Gameiro
Luiz Fernando Ferraz da Silva
Ėlodie Baron
Jean-Jacques Rouby
José Otavio Costa Auler Jr
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03399-z

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue