Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Ritonavir | Research

Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis

Authors: Marie Lecronier, Alexandra Beurton, Sonia Burrel, Luc Haudebourg, Robin Deleris, Julien Le Marec, Sara Virolle, Safaa Nemlaghi, Côme Bureau, Pierre Mora, Martin De Sarcus, Olivier Clovet, Baptiste Duceau, Paul Henri Grisot, Marie Hélène Pari, Jérémy Arzoine, Ulrich Clarac, David Boutolleau, Mathieu Raux, Julie Delemazure, Morgane Faure, Maxens Decavele, Elise Morawiec, Julien Mayaux, Alexandre Demoule, Martin Dres

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak is spreading worldwide. To date, no specific treatment has convincingly demonstrated its efficacy. Hydroxychloroquine and lopinavir/ritonavir have potential interest, but virological and clinical data are scarce, especially in critically ill patients.

Methods

The present report took the opportunity of compassionate use and successive drug shortages to compare the effects of two therapeutic options, lopinavir/ritonavir and hydroxychloroquine, as compared to standard of care only. The primary outcomes were treatment escalation (intubation, extra-corporeal membrane oxygenation support, or renal replacement therapy) after day 1 until day 28. Secondary outcomes included ventilator-free days at day 28, mortality at day 14 and day 28, treatment safety issues and changes in respiratory tracts, and plasma viral load (as estimated by cycle threshold value) between admission and day 7.

Results

Eighty patients were treated during a 4-week period and included in the analysis: 22 (28%) received standard of care only, 20 (25%) patients received lopinavir/ritonavir associated to standard of care, and 38 (47%) patients received hydroxychloroquine and standard of care. Baseline characteristics were well balanced between the 3 groups. Treatment escalation occurred in 9 (41%), 10 (50%), and 15 (39%) patients who received standard of care only, standard of care and lopinavir/ritonavir, and standard of care and hydroxychloroquine, respectively (p = 0.567). There was no significant difference between groups regarding the number of ventilator-free days at day 28 and mortality at day 14 and day 28. Finally, there was no significant change between groups in viral respiratory or plasma load between admission and day 7.

Conclusion

In critically ill patients admitted for SARS-CoV-2-related pneumonia, no difference was found between hydroxychloroquine or lopinavir/ritonavir as compared to standard of care only on the proportion of patients who needed treatment escalation at day 28. Further randomized controlled trials are required to demonstrate whether these drugs may be useful in this context.
Literature
1.
go back to reference Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRef Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRef
2.
go back to reference Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;e200994. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;e200994.
3.
go back to reference Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323:1824–36.CrossRef Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323:1824–36.CrossRef
4.
go back to reference Romanelli F, Smith KM, Hoven AD. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr Pharm Des. 2004;10:2643–8.CrossRef Romanelli F, Smith KM, Hoven AD. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr Pharm Des. 2004;10:2643–8.CrossRef
5.
go back to reference Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323:264–8.CrossRef Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323:264–8.CrossRef
6.
go back to reference Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.CrossRef Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.CrossRef
7.
go back to reference Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949.
8.
go back to reference Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411–18. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411–18.
9.
go back to reference Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–6.CrossRef Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–6.CrossRef
10.
go back to reference Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382:1787–99.CrossRef Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382:1787–99.CrossRef
11.
go back to reference Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.CrossRef Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.CrossRef
12.
go back to reference Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 2020;382(21):2012–22. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 2020;382(21):2012–22.
13.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335:806–8.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335:806–8.CrossRef
14.
go back to reference Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
15.
go back to reference Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antivir Res. 2020;177:104762.CrossRef Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antivir Res. 2020;177:104762.CrossRef
16.
go back to reference Roques P, Thiberville S-D, Dupuis-Maguiraga L, Lum F-M, Labadie K, Martinon F, et al. Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses. 2018;10(5):268. Roques P, Thiberville S-D, Dupuis-Maguiraga L, Lum F-M, Labadie K, Martinon F, et al. Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses. 2018;10(5):268.
17.
go back to reference Taccone FS, Gorham J, Vincent J-L. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med. 20208(6):539–41. Taccone FS, Gorham J, Vincent J-L. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med. 20208(6):539–41.
18.
go back to reference Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;46:854–87.CrossRef Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;46:854–87.CrossRef
19.
go back to reference Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201:1430–4.CrossRef Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201:1430–4.CrossRef
20.
go back to reference Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70.
21.
go back to reference Nguyen LS, Dolladille C, Drici M-D, Fenioux C, Alexandre J, Mira J-P, et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization Pharmacovigilance Database. Circulation. 2020. Online ahead of print. Nguyen LS, Dolladille C, Drici M-D, Fenioux C, Alexandre J, Mira J-P, et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization Pharmacovigilance Database. Circulation. 2020. Online ahead of print.
Metadata
Title
Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis
Authors
Marie Lecronier
Alexandra Beurton
Sonia Burrel
Luc Haudebourg
Robin Deleris
Julien Le Marec
Sara Virolle
Safaa Nemlaghi
Côme Bureau
Pierre Mora
Martin De Sarcus
Olivier Clovet
Baptiste Duceau
Paul Henri Grisot
Marie Hélène Pari
Jérémy Arzoine
Ulrich Clarac
David Boutolleau
Mathieu Raux
Julie Delemazure
Morgane Faure
Maxens Decavele
Elise Morawiec
Julien Mayaux
Alexandre Demoule
Martin Dres
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03117-9

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue