Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Acute Kidney Injury | Research

0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial

Authors: Vijai Williams, Muralidharan Jayashree, Karthi Nallasamy, Devi Dayal, Amit Rawat

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Acute kidney injury (AKI) is an important complication encountered during the course of diabetic ketoacidosis (DKA). Plasma-Lyte with lower chloride concentration than saline has been shown to be associated with reduced incidence of AKI in adults with septic shock. No study has compared this in DKA.

Methods

This double-blind, parallel-arm, investigator-initiated, randomized controlled trial compared 0.9% saline with Plasma-Lyte-A as initial fluid in pediatric DKA. The study was done in a tertiary care, teaching, and referral hospital in India in children (> 1 month–12 years) with DKA as defined by ISPAD. Children with cerebral edema or known chronic kidney/liver disease or who had received pre-referral fluids and/or insulin were excluded. Sixty-six children were randomized to receive either Plasma-Lyte (n = 34) or 0.9% saline (n = 32).

Main outcomes

Primary outcome was incidence of new or progressive AKI, defined as a composite outcome of change in creatinine (defined by KDIGO), estimated creatinine clearance (defined by p-RIFLE), and NGAL levels. The secondary outcomes were resolution of AKI, time to resolution of DKA (pH > 7.3, bicarbonate> 15 mEq/L & normal sensorium), change in chloride, pH and bicarbonate levels, proportion of in-hospital all-cause mortality, need for renal replacement therapy (RRT), and length of ICU and hospital stay.

Results

Baseline characteristics were similar in both groups. The incidence of new or progressive AKI was similar in both [Plasma-Lyte 13 (38.2%) versus 0.9% saline 15 (46.9%); adjusted OR 1.22; 95% CI 0.43–3.43, p = 0.70]. The median (IQR) time to resolution of DKA in Plasma-Lyte-A and 0.9% saline were 14.5 (12 to 20) and 16 (8 to 20) h respectively. Time to resolution of AKI was similar in both [Plasma-Lyte 22.1 versus 0.9% saline 18.8 h (adjusted HR 1.72; 95% CI 0.83–3.57; p = 0.14)]. Length of hospital stay was also similar in both [Plasma-Lyte 9 (8 to 12) versus 0.9% saline 10 (8.25 to 11) days; p = 0.39].

Conclusions

The incidence of new or progressive AKI and resolution of AKI were similar in both groups. Plasma-Lyte-A was similar to 0.9% Saline in time to resolution of DKA, need for RRT, mortality, and lengths of PICU and hospital stay.

Trial registration

Clinical trial registry of India, CTRI/2018/05/014042 (ctri.​nic.​in) (Retrospectively registered).
Appendix
Available only for authorised users
Literature
1.
go back to reference Umpierrez GE, Kitabchi AE. Diabetic ketoacidosis. Treat Endocrinol. 2003;2:95–108.CrossRef Umpierrez GE, Kitabchi AE. Diabetic ketoacidosis. Treat Endocrinol. 2003;2:95–108.CrossRef
2.
go back to reference Umpierrez G, Freire AX. Abdominal pain in patients with hyperglycemic crises. J Crit Care. 2002;17:63–7.CrossRef Umpierrez G, Freire AX. Abdominal pain in patients with hyperglycemic crises. J Crit Care. 2002;17:63–7.CrossRef
3.
go back to reference Wolfsdorf J, Craig ME, Daneman D, Dunger D, Edge J, Lee W, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes. 2009;10:118–33.CrossRef Wolfsdorf J, Craig ME, Daneman D, Dunger D, Edge J, Lee W, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes. 2009;10:118–33.CrossRef
4.
go back to reference Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38.CrossRef Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38.CrossRef
5.
go back to reference Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226.CrossRef Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226.CrossRef
6.
go back to reference Lobo DN, Stanga Z, Simpson JA, Anderson JA, Rowlands BJ, Allison SP. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci Lond Engl. 2001;101:173–9.CrossRef Lobo DN, Stanga Z, Simpson JA, Anderson JA, Rowlands BJ, Allison SP. Dilution and redistribution effects of rapid 2-litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci Lond Engl. 2001;101:173–9.CrossRef
7.
go back to reference Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high-versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36.CrossRef Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high-versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36.CrossRef
8.
go back to reference Raghunathan K, Bonavia A, Nathanson BH, Beadles CA, Shaw AD, Brookhart MA, et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology. 2015;123:1385–93.CrossRef Raghunathan K, Bonavia A, Nathanson BH, Beadles CA, Shaw AD, Brookhart MA, et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology. 2015;123:1385–93.CrossRef
9.
go back to reference Guirgis FW, Williams DJ, Hale M, Bajwa AA, Shujaat A, Patel N, et al. The relationship of intravenous fluid chloride content to kidney function in patients with severe sepsis or septic shock. Am J Emerg Med. 2015;33:439–43.CrossRef Guirgis FW, Williams DJ, Hale M, Bajwa AA, Shujaat A, Patel N, et al. The relationship of intravenous fluid chloride content to kidney function in patients with severe sepsis or septic shock. Am J Emerg Med. 2015;33:439–43.CrossRef
10.
go back to reference Roquilly A, Loutrel O, Cinotti R, Rosenczweig E, Flet L, Mahe PJ, et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care. 2013;17:R77.CrossRef Roquilly A, Loutrel O, Cinotti R, Rosenczweig E, Flet L, Mahe PJ, et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care. 2013;17:R77.CrossRef
11.
go back to reference Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015;314:1701–10.CrossRef Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015;314:1701–10.CrossRef
12.
go back to reference Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195:1362–72.CrossRef Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195:1362–72.CrossRef
13.
go back to reference Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–39.CrossRef Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–39.CrossRef
14.
go back to reference Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378:819–28.CrossRef Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378:819–28.CrossRef
15.
go back to reference Yung M, Letton G, Keeley S. Controlled trial of Hartmann’s solution versus 0.9% saline for diabetic ketoacidosis: controlled trial of Hartmann’s solution in DKA. J Paediatr Child Health. 2017;53:12–7.CrossRef Yung M, Letton G, Keeley S. Controlled trial of Hartmann’s solution versus 0.9% saline for diabetic ketoacidosis: controlled trial of Hartmann’s solution in DKA. J Paediatr Child Health. 2017;53:12–7.CrossRef
16.
go back to reference Jayashree M, Sasidharan R, Singhi S, Nallasamy K, Baalaaji M. Root cause analysis of diabetic ketoacidosis admissions at a tertiary referral pediatric emergency department in North India. Indian J Endocrinol Metab. 2017;21:710.CrossRef Jayashree M, Sasidharan R, Singhi S, Nallasamy K, Baalaaji M. Root cause analysis of diabetic ketoacidosis admissions at a tertiary referral pediatric emergency department in North India. Indian J Endocrinol Metab. 2017;21:710.CrossRef
17.
go back to reference Moulik NR, Jayashree M, Singhi S, Bhalla AK, Attri S. Nutritional status and complications in children with diabetic ketoacidosis. Pediatr Crit Care Med. 2012;13:e227–33.CrossRef Moulik NR, Jayashree M, Singhi S, Bhalla AK, Attri S. Nutritional status and complications in children with diabetic ketoacidosis. Pediatr Crit Care Med. 2012;13:e227–33.CrossRef
18.
go back to reference Jayashree M, Williams V, Iyer R. Fluid therapy for pediatric patients with diabetic ketoacidosis: current perspectives. Diab Metab Syndr Obes Targets Ther. 2019;12:2355–61.CrossRef Jayashree M, Williams V, Iyer R. Fluid therapy for pediatric patients with diabetic ketoacidosis: current perspectives. Diab Metab Syndr Obes Targets Ther. 2019;12:2355–61.CrossRef
19.
go back to reference Baalaaji M, Jayashree M, Nallasamy K, Singhi S, Bansal A. Predictors and outcome of acute kidney injury in children with diabetic ketoacidosis. Indian Pediatr. 2018;55:311–4.CrossRef Baalaaji M, Jayashree M, Nallasamy K, Singhi S, Bansal A. Predictors and outcome of acute kidney injury in children with diabetic ketoacidosis. Indian Pediatr. 2018;55:311–4.CrossRef
20.
go back to reference Wolfsdorf JI. The International Society of Pediatric and Adolescent Diabetes guidelines for management of diabetic ketoacidosis: do the guidelines need to be modified? Pediatr Diabetes. 2014;15:277–86.CrossRef Wolfsdorf JI. The International Society of Pediatric and Adolescent Diabetes guidelines for management of diabetic ketoacidosis: do the guidelines need to be modified? Pediatr Diabetes. 2014;15:277–86.CrossRef
21.
go back to reference Orban J-C, Maizière E-M, Ghaddab A, Van Obberghen E, Ichai C. Incidence and characteristics of acute kidney injury in severe diabetic ketoacidosis. PLoS One. 2014;9:e110925.CrossRef Orban J-C, Maizière E-M, Ghaddab A, Van Obberghen E, Ichai C. Incidence and characteristics of acute kidney injury in severe diabetic ketoacidosis. PLoS One. 2014;9:e110925.CrossRef
22.
go back to reference Hursh BE, Ronsley R, Islam N, Mammen C, Panagiotopoulos C. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 2017;171:e170020.CrossRef Hursh BE, Ronsley R, Islam N, Mammen C, Panagiotopoulos C. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 2017;171:e170020.CrossRef
23.
go back to reference Jayashree M, Singhi S. Diabetic ketoacidosis: predictors of outcome in a pediatric intensive care unit of a developing country. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2004;5:427–33. Jayashree M, Singhi S. Diabetic ketoacidosis: predictors of outcome in a pediatric intensive care unit of a developing country. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2004;5:427–33.
24.
go back to reference Edge JA, Hawkins MM, Winter DL, Dunger DB. The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch Dis Child. 2001;85:16–22.CrossRef Edge JA, Hawkins MM, Winter DL, Dunger DB. The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch Dis Child. 2001;85:16–22.CrossRef
25.
go back to reference Mahler SA, Conrad SA, Wang H, Arnold TC. Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis. Am J Emerg Med. 2011;29:670–4.CrossRef Mahler SA, Conrad SA, Wang H, Arnold TC. Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis. Am J Emerg Med. 2011;29:670–4.CrossRef
26.
go back to reference Van Zyl DG, Rheeder P, Delport E. Fluid management in diabetic-acidosis--Ringer’s lactate versus normal saline: a randomized controlled trial. QJM. 2012;105:337–43.CrossRef Van Zyl DG, Rheeder P, Delport E. Fluid management in diabetic-acidosis--Ringer’s lactate versus normal saline: a randomized controlled trial. QJM. 2012;105:337–43.CrossRef
27.
go back to reference Chua H-R, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care. 2012;27:138–45.CrossRef Chua H-R, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care. 2012;27:138–45.CrossRef
28.
go back to reference Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41:257–64.CrossRef Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41:257–64.CrossRef
29.
go back to reference Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566.CrossRef Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566.CrossRef
30.
go back to reference Verma B, Luethi N, Cioccari L, Lloyd-Donald P, Crisman M, Eastwood G, et al. A multicentre randomised controlled pilot study of fluid resuscitation with saline or Plasma-Lyte 148 in critically ill patients. Crit Care Resusc J Australas Acad Crit Care Med. 2016;18:205–12. Verma B, Luethi N, Cioccari L, Lloyd-Donald P, Crisman M, Eastwood G, et al. A multicentre randomised controlled pilot study of fluid resuscitation with saline or Plasma-Lyte 148 in critically ill patients. Crit Care Resusc J Australas Acad Crit Care Med. 2016;18:205–12.
31.
go back to reference Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr. 2014;168:999–1005.CrossRef Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr. 2014;168:999–1005.CrossRef
Metadata
Title
0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial
Authors
Vijai Williams
Muralidharan Jayashree
Karthi Nallasamy
Devi Dayal
Amit Rawat
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2683-3

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue