Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Research

Cumulative fluid accumulation is associated with the development of acute kidney injury and non-recovery of renal function: a retrospective analysis

Authors: Jing Zhang, Siobhan Crichton, Alison Dixon, Nina Seylanova, Zhiyong Y. Peng, Marlies Ostermann

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Acute kidney injury (AKI) is common in patients in the intensive care unit (ICU) and may be present on admission or develop during ICU stay. Our objectives were (a) to identify factors independently associated with the development of new AKI during early stay in the ICU and (b) to determine the risk factors for non-recovery of AKI.

Methods

We retrospectively analysed prospectively collected data of patients admitted to a multi-disciplinary ICU in a single tertiary care centre in the UK between January 2014 and December 2016. We identified all patients without AKI or end-stage renal failure on admission to the ICU and compared the outcome and characteristics of patients who developed AKI according to KDIGO criteria after 24 h in the ICU with those who did not develop AKI in the first 7 days in the ICU. Multivariable logistic regression was applied to identify factors associated with the development of new AKI during the 24–72-h period after admission. Among the patients with new AKI, we identified those with full, partial or no renal recovery and assessed factors associated with non-recovery.

Results

Among 2525 patients without AKI on admission, the incidence of early ICU-acquired AKI was 33.2% (AKI I 41.2%, AKI II 35%, AKI III 23.4%). Body mass index, Sequential Organ Failure Assessment score on admission, chronic kidney disease (CKD) and cumulative fluid balance (FB) were independently associated with the new development of AKI. By day 7, 69% had fully recovered renal function, 8% had partial recovery and 23% had no renal recovery. Hospital mortality was significantly higher in those without renal recovery. Mechanical ventilation, diuretic use, AKI stage III, CKD, net FB on first day of AKI and cumulative FB 48 h later were independently associated with non-recovery with cumulative fluid balance having a U-shape association.

Conclusions

Early development of AKI in the ICU is common and mortality is highest in patients who do not recover renal function. Extreme negative and positive FB were strong risk factors for AKI non-recovery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–123.CrossRef Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–123.CrossRef
2.
go back to reference Ostermann M, Joannidis M. Acute kidney injury in 2016: diagnosis and diagnostic workup. Crit Care. 2016;20(1):299.CrossRef Ostermann M, Joannidis M. Acute kidney injury in 2016: diagnosis and diagnostic workup. Crit Care. 2016;20(1):299.CrossRef
3.
go back to reference Ostermann M, Cerda J. The burden of AKI and related financial issues. Contrib Nephrol. 2018;193:100–12.CrossRef Ostermann M, Cerda J. The burden of AKI and related financial issues. Contrib Nephrol. 2018;193:100–12.CrossRef
4.
go back to reference Chawla LS, Davison DL, Brasha-Mitchell E, et al. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9(3):448–56.CrossRef Chawla LS, Davison DL, Brasha-Mitchell E, et al. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9(3):448–56.CrossRef
5.
go back to reference Wald R, Quinn RR, Adhikari NK, et al. Risk of chronic dialysis and death following acute kidney injury. Am J Med. 2012;125:585–93.CrossRef Wald R, Quinn RR, Adhikari NK, et al. Risk of chronic dialysis and death following acute kidney injury. Am J Med. 2012;125:585–93.CrossRef
6.
go back to reference Guerin C, Girard R, Selli JM, et al. Initial versus delayed acute renal failure in the intensive care unit. A multicenter prospective epidemiological study. Rhone-Alpes Area Study Group on Acute Renal Failure. Am J Respir Crit Care Med. 2000;161(3 Pt 1):872–9.CrossRef Guerin C, Girard R, Selli JM, et al. Initial versus delayed acute renal failure in the intensive care unit. A multicenter prospective epidemiological study. Rhone-Alpes Area Study Group on Acute Renal Failure. Am J Respir Crit Care Med. 2000;161(3 Pt 1):872–9.CrossRef
7.
go back to reference Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef
8.
go back to reference Selby NM, Casula A, Lamming L, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30(3):505–15.CrossRef Selby NM, Casula A, Lamming L, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30(3):505–15.CrossRef
9.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.CrossRef
10.
go back to reference Abd ElHafeez S, Tripepi G, Quinn R, Naga Y, Abdelmonem S, AbdelHady M, Liu P, James M, Zoccali C, Ravani P. Risk, predictors, and outcomes of acute kidney injury in patients admitted to intensive care units in Egypt. Sci Rep. 2017;7(1):17163.CrossRef Abd ElHafeez S, Tripepi G, Quinn R, Naga Y, Abdelmonem S, AbdelHady M, Liu P, James M, Zoccali C, Ravani P. Risk, predictors, and outcomes of acute kidney injury in patients admitted to intensive care units in Egypt. Sci Rep. 2017;7(1):17163.CrossRef
11.
go back to reference Raimundo M, Crichton S, Martin JR, et al. Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock. 2015;44(5):431–7.CrossRef Raimundo M, Crichton S, Martin JR, et al. Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock. 2015;44(5):431–7.CrossRef
12.
go back to reference Payen D, de Pont AC, Sakr Y, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.CrossRef Payen D, de Pont AC, Sakr Y, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.CrossRef
13.
go back to reference Prowle JR, Bellomo R. Fluid administration and the kidney. Curr Opin Crit Care. 2013;19(4):308–14.CrossRef Prowle JR, Bellomo R. Fluid administration and the kidney. Curr Opin Crit Care. 2013;19(4):308–14.CrossRef
14.
go back to reference Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet. 1988;1(8593):1033–5.CrossRef Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet. 1988;1(8593):1033–5.CrossRef
15.
go back to reference Van Biesen W, Yegenaga I, Vanholder R, et al. Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18(1):54–60.PubMed Van Biesen W, Yegenaga I, Vanholder R, et al. Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18(1):54–60.PubMed
16.
go back to reference Ostermann M, Liu K, Kashani K. Fluid management in acute kidney injury. Chest. 2019;156(3):594–603.CrossRef Ostermann M, Liu K, Kashani K. Fluid management in acute kidney injury. Chest. 2019;156(3):594–603.CrossRef
17.
go back to reference Ostermann M, Oudemans van-Straaten HM, Forni LG. Fluid overload and acute kidney injury: cause or consequence? Crit Care. 2015;19(1):443.CrossRef Ostermann M, Oudemans van-Straaten HM, Forni LG. Fluid overload and acute kidney injury: cause or consequence? Crit Care. 2015;19(1):443.CrossRef
18.
go back to reference Hjortrup PB, Haase N, Bundgaard H, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42(11):1695–705.CrossRef Hjortrup PB, Haase N, Bundgaard H, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42(11):1695–705.CrossRef
19.
go back to reference Shashaty MG, Meyer NJ, Localio AR, et al. African American race, obesity, and blood product transfusion are risk factors for acute kidney injury in critically ill trauma patients. J Crit Care. 2012;27(5):496–504.CrossRef Shashaty MG, Meyer NJ, Localio AR, et al. African American race, obesity, and blood product transfusion are risk factors for acute kidney injury in critically ill trauma patients. J Crit Care. 2012;27(5):496–504.CrossRef
20.
go back to reference Danziger J, Chen KP, Lee J, et al. Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med. 2016;44(2):328–34.CrossRef Danziger J, Chen KP, Lee J, et al. Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med. 2016;44(2):328–34.CrossRef
21.
go back to reference Soto GJ, Frank AJ, Christiani DC, et al. Body mass index and acute kidney injury in the acute respiratory distress syndrome. Crit Care Med. 2012;40(9):2601–8.CrossRef Soto GJ, Frank AJ, Christiani DC, et al. Body mass index and acute kidney injury in the acute respiratory distress syndrome. Crit Care Med. 2012;40(9):2601–8.CrossRef
22.
go back to reference Zou Z, Zhuang Y, Liu L, et al. Role of body mass index in acute kidney injury patients after cardiac surgery. Cardiorenal Med. 2017;8(1):9–17.CrossRef Zou Z, Zhuang Y, Liu L, et al. Role of body mass index in acute kidney injury patients after cardiac surgery. Cardiorenal Med. 2017;8(1):9–17.CrossRef
23.
go back to reference Billings FT 4th, Pretorius M, Schildcrout JS, et al. Obesity and oxidative stress predict AKI after cardiac surgery. J Am Soc Nephrol. 2012;23(7):1221–8.CrossRef Billings FT 4th, Pretorius M, Schildcrout JS, et al. Obesity and oxidative stress predict AKI after cardiac surgery. J Am Soc Nephrol. 2012;23(7):1221–8.CrossRef
24.
go back to reference Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.CrossRef Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.CrossRef
25.
go back to reference Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39(12):2665–71.CrossRef Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39(12):2665–71.CrossRef
Metadata
Title
Cumulative fluid accumulation is associated with the development of acute kidney injury and non-recovery of renal function: a retrospective analysis
Authors
Jing Zhang
Siobhan Crichton
Alison Dixon
Nina Seylanova
Zhiyong Y. Peng
Marlies Ostermann
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2673-5

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue