Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Research

Exogenous vasopressin dose-dependently modulates gastric microcirculatory oxygenation in dogs via V1A receptor

Authors: Richard Truse, Steven Grewe, Anna Herminghaus, Jan Schulz, Andreas P. M. Weber, Tabea Mettler-Altmann, Inge Bauer, Olaf Picker, Christian Vollmer

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Hypercapnia improves gastric microcirculatory oxygenation (μHbO2) and increases vasopressin plasma levels, whereas V1A receptor blockade abolishes the increase of μHbO2. The aim of this study was to evaluate the effect of exogenous vasopressin (AVP) in increasing doses on microcirculatory perfusion and oxygenation and systemic hemodynamic variables. Furthermore, we evaluated the role of the vasopressin V1A receptor in mediating the effects.

Methods

In repetitive experiments, six anesthetized dogs received a selective vasopressin V1A receptor inhibitor ([Pmp1, Tyr (Me)2]-Arg8-Vasopressin) or sodium chloride (control groups). Thereafter, a continuous infusion of AVP was started with dose escalation every 30 min (0.001 ng/kg/min–1 ng/kg/min). Microcirculatory variables of the oral and gastric mucosa were measured with reflectance spectrometry, laser Doppler flowmetry, and incident dark field imaging. Transpulmonary thermodilution was used to measure systemic hemodynamic variables. AVP plasma concentrations were measured during baseline conditions and 30 min after each dose escalation.

Results

During control conditions, gastric μHbO2 did not change during the course of experiments. Infusion of 0.001 ng/kg/min and 0.01 ng/kg/min AVP increased gastric μHbO2 to 87 ± 4% and 87 ± 6%, respectively, compared to baseline values (80 ± 7%), whereas application of 1 ng/kg/min AVP strongly reduced gastric μHbO2 (59 ± 16%). V1A receptor blockade prior to AVP treatment abolished these effects on μHbO2. AVP dose-dependently enhanced systemic vascular resistance (SVR) and decreased cardiac output (CO). After prior V1A receptor blockade, SVR was reduced and CO increased (0.1 ng/kg/min + 1 ng/kg/min AVP).

Conclusions

Exogenous AVP dose-dependently modulates gastric μHbO2, with an increased μHbO2 with ultra-low dose AVP. The effects of AVP on μHbO2 are abolished by V1A receptor inhibition. These effects are independent of a modulation of systemic hemodynamic variables.
Literature
1.
go back to reference Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.PubMedCrossRef Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.PubMedCrossRef
2.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.PubMedCrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.PubMedCrossRef
3.
go back to reference Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1--receptor physiology. Crit Care Lond Engl. 2003;7:427–34.CrossRef Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1--receptor physiology. Crit Care Lond Engl. 2003;7:427–34.CrossRef
4.
go back to reference Treschan TA, Peters J. The vasopressin system: physiology and clinical strategies. Anesthesiology. 2006;105:599–612 quiz 639–40.PubMedCrossRef Treschan TA, Peters J. The vasopressin system: physiology and clinical strategies. Anesthesiology. 2006;105:599–612 quiz 639–40.PubMedCrossRef
5.
go back to reference Bishop VS, Hay M. Involvement of the area postrema in the regulation of sympathetic outflow to the cardiovascular system. Front Neuroendocrinol. 1993;14:57–75.PubMedCrossRef Bishop VS, Hay M. Involvement of the area postrema in the regulation of sympathetic outflow to the cardiovascular system. Front Neuroendocrinol. 1993;14:57–75.PubMedCrossRef
6.
go back to reference Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.PubMedCrossRef Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.PubMedCrossRef
7.
go back to reference Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.PubMedCrossRef Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.PubMedCrossRef
8.
go back to reference Asfar P, Radermacher P, Hauser B. Vasopressin and splanchnic blood flow: vasoconstriction does not equal vasoconstriction in every organ. Intensive Care Med. 2006;32:21–3.PubMedCrossRef Asfar P, Radermacher P, Hauser B. Vasopressin and splanchnic blood flow: vasoconstriction does not equal vasoconstriction in every organ. Intensive Care Med. 2006;32:21–3.PubMedCrossRef
9.
go back to reference Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20:411–7.PubMedCrossRef Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20:411–7.PubMedCrossRef
10.
go back to reference van Haren FMP, Sleigh JW, Pickkers P, Van der Hoeven JG. Gastrointestinal perfusion in septic shock. Anaesth Intensive Care. 2007;35:679–94.PubMedCrossRef van Haren FMP, Sleigh JW, Pickkers P, Van der Hoeven JG. Gastrointestinal perfusion in septic shock. Anaesth Intensive Care. 2007;35:679–94.PubMedCrossRef
11.
go back to reference Vollmer C, Schwartges I, Naber S, Beck C, Bauer I, Picker O. Vasopressin V (1A) receptors mediate the increase in gastric mucosal oxygenation during hypercapnia. J Endocrinol. 2013;217:59–67.PubMedCrossRef Vollmer C, Schwartges I, Naber S, Beck C, Bauer I, Picker O. Vasopressin V (1A) receptors mediate the increase in gastric mucosal oxygenation during hypercapnia. J Endocrinol. 2013;217:59–67.PubMedCrossRef
12.
go back to reference Schöneborn S, Vollmer C, Barthel F, Herminghaus A, Schulz J, Bauer I, et al. Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats. Microvasc Res. 2016;106:24–30.PubMedCrossRef Schöneborn S, Vollmer C, Barthel F, Herminghaus A, Schulz J, Bauer I, et al. Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats. Microvasc Res. 2016;106:24–30.PubMedCrossRef
13.
go back to reference Philbin DM, Baratz RA, Patterson RW. The effect of carbon dioxide on plasma antidiuretic hormone levels during intermittent positive-pressure breathing. Anesthesiology. 1970;33:345–9.PubMedCrossRef Philbin DM, Baratz RA, Patterson RW. The effect of carbon dioxide on plasma antidiuretic hormone levels during intermittent positive-pressure breathing. Anesthesiology. 1970;33:345–9.PubMedCrossRef
14.
go back to reference Forsling ML, Rees M. Proceedings: effects of hypoxia and hypercapnia on plasma vasopressin concentration. J Endocrinol. 1975;67:62P–3P.PubMed Forsling ML, Rees M. Proceedings: effects of hypoxia and hypercapnia on plasma vasopressin concentration. J Endocrinol. 1975;67:62P–3P.PubMed
15.
go back to reference Dyson DH. Positive pressure ventilation during anesthesia in dogs: assessment of surface area derived tidal volume. Can Vet J Rev Vét Can. 2012;53:63–6. Dyson DH. Positive pressure ventilation during anesthesia in dogs: assessment of surface area derived tidal volume. Can Vet J Rev Vét Can. 2012;53:63–6.
16.
go back to reference Krug A. CME: Mikrozirkulation und Sauerstoffversorgung des Gewebes - Methode des so genannten O2C (oxygen to see). Phlebologie. 2006;35:300–12.CrossRef Krug A. CME: Mikrozirkulation und Sauerstoffversorgung des Gewebes - Methode des so genannten O2C (oxygen to see). Phlebologie. 2006;35:300–12.CrossRef
17.
go back to reference Fournell A, Schwarte LA, Kindgen-Milles D, Müller E, Scheeren TWL. Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure. Crit Care Med. 2003;31:1705–10.PubMedCrossRef Fournell A, Schwarte LA, Kindgen-Milles D, Müller E, Scheeren TWL. Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure. Crit Care Med. 2003;31:1705–10.PubMedCrossRef
18.
go back to reference Sato N, Kawano S, Kamada T, Takeda M. Hemodynamics of the gastric mucosa and gastric ulceration in rats and in patients with gastric ulcer. Dig Dis Sci. 1986;31:35S–41S.PubMedCrossRef Sato N, Kawano S, Kamada T, Takeda M. Hemodynamics of the gastric mucosa and gastric ulceration in rats and in patients with gastric ulcer. Dig Dis Sci. 1986;31:35S–41S.PubMedCrossRef
19.
go back to reference Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:40.PubMedCrossRef Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:40.PubMedCrossRef
20.
go back to reference Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99.PubMedCrossRef Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99.PubMedCrossRef
21.
go back to reference De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.PubMedPubMedCentralCrossRef De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.PubMedPubMedCentralCrossRef
23.
go back to reference Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill--where do we stand? Crit Care Lond Engl. 2012;16:224.CrossRef Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill--where do we stand? Crit Care Lond Engl. 2012;16:224.CrossRef
24.
go back to reference Meddings JB, Sutherland LR, Byles NI, Wallace JL. Sucrose: a novel permeability marker for gastroduodenal disease. Gastroenterology. 1993;104:1619–26.PubMedCrossRef Meddings JB, Sutherland LR, Byles NI, Wallace JL. Sucrose: a novel permeability marker for gastroduodenal disease. Gastroenterology. 1993;104:1619–26.PubMedCrossRef
25.
go back to reference Li S, Wu W-C, He C-Y, Han Z, Jin D-Y, Wang L. Change of intestinal mucosa barrier function in the progress of non-alcoholic steatohepatitis in rats. World J Gastroenterol WJG. 2008;14:3254–8.PubMedCrossRef Li S, Wu W-C, He C-Y, Han Z, Jin D-Y, Wang L. Change of intestinal mucosa barrier function in the progress of non-alcoholic steatohepatitis in rats. World J Gastroenterol WJG. 2008;14:3254–8.PubMedCrossRef
26.
go back to reference Fiehn O, Kind T. Metabolite profiling in blood plasma. Methods Mol Biol Clifton NJ. 2007;358:3–17.CrossRef Fiehn O, Kind T. Metabolite profiling in blood plasma. Methods Mol Biol Clifton NJ. 2007;358:3–17.CrossRef
27.
go back to reference Kruszynski M, Lammek B, Manning M, Seto J, Haldar J, Sawyer WH. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl) tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin J Med Chem 1980;23:364–368. Kruszynski M, Lammek B, Manning M, Seto J, Haldar J, Sawyer WH. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl) tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin J Med Chem 1980;23:364–368.
28.
go back to reference Knotzer H, Pajk W, Maier S, Ladurner R, Kleinsasser A, Wenzel V, et al. Arginine vasopressin reduces intestinal oxygen supply and mucosal tissue oxygen tension. Am J Physiol Heart Circ Physiol. 2005;289:H168–73.PubMedCrossRef Knotzer H, Pajk W, Maier S, Ladurner R, Kleinsasser A, Wenzel V, et al. Arginine vasopressin reduces intestinal oxygen supply and mucosal tissue oxygen tension. Am J Physiol Heart Circ Physiol. 2005;289:H168–73.PubMedCrossRef
29.
go back to reference Juul KV, Bichet DG, Nielsen S, Nørgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol-Ren Physiol. 2014;306:F931–40.CrossRef Juul KV, Bichet DG, Nielsen S, Nørgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol-Ren Physiol. 2014;306:F931–40.CrossRef
30.
go back to reference Liard JF. Peripheral vasodilatation induced by a vasopressin analogue with selective V2-agonism in dogs. Am J Phys. 1989;256:H1621–6. Liard JF. Peripheral vasodilatation induced by a vasopressin analogue with selective V2-agonism in dogs. Am J Phys. 1989;256:H1621–6.
31.
go back to reference Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24:609–28.PubMedPubMedCentralCrossRef Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24:609–28.PubMedPubMedCentralCrossRef
32.
go back to reference Sharman A, Low J. Vasopressin and its role in critical care. Contin Educ Anaesth Crit Care Pain. 2008;8:134–7.CrossRef Sharman A, Low J. Vasopressin and its role in critical care. Contin Educ Anaesth Crit Care Pain. 2008;8:134–7.CrossRef
33.
go back to reference Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol. 1987;100:123–36.PubMedCrossRef Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol. 1987;100:123–36.PubMedCrossRef
34.
go back to reference Ackland G, Grocott MP, Mythen MG. Understanding gastrointestinal perfusion in critical care: so near, and yet so far. Crit Care Lond Engl. 2000;4:269–81.CrossRef Ackland G, Grocott MP, Mythen MG. Understanding gastrointestinal perfusion in critical care: so near, and yet so far. Crit Care Lond Engl. 2000;4:269–81.CrossRef
35.
go back to reference Pawlik W, Shepherd AP, Jacobson ED. Effect of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J Clin Invest. 1975;56:484–90.PubMedPubMedCentralCrossRef Pawlik W, Shepherd AP, Jacobson ED. Effect of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J Clin Invest. 1975;56:484–90.PubMedPubMedCentralCrossRef
36.
go back to reference Friesenecker B, Tsai AG, Dünser MW, Mayr AJ, Martini J, Knotzer H, et al. Oxygen distribution in microcirculation after arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol. 2004;287:H1792–800.PubMedCrossRef Friesenecker B, Tsai AG, Dünser MW, Mayr AJ, Martini J, Knotzer H, et al. Oxygen distribution in microcirculation after arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol. 2004;287:H1792–800.PubMedCrossRef
37.
go back to reference Sims CA, Yuxia G, Singh K, Werlin EC, Reilly PM, Baur JA. Supplemental arginine vasopressin during the resuscitation of severe hemorrhagic shock preserves renal mitochondrial function. PLoS One. 2017;12:e0186339.PubMedPubMedCentralCrossRef Sims CA, Yuxia G, Singh K, Werlin EC, Reilly PM, Baur JA. Supplemental arginine vasopressin during the resuscitation of severe hemorrhagic shock preserves renal mitochondrial function. PLoS One. 2017;12:e0186339.PubMedPubMedCentralCrossRef
38.
go back to reference Ida KK, Chisholm KI, Malbouisson LMS, Papkovsky DB, Dyson A, Singer M, et al. Protection of cerebral microcirculation, mitochondrial function, and electrocortical activity by small-volume resuscitation with terlipressin in a rat model of haemorrhagic shock. Br J Anaesth. 2018;120:1245–54.PubMedCrossRef Ida KK, Chisholm KI, Malbouisson LMS, Papkovsky DB, Dyson A, Singer M, et al. Protection of cerebral microcirculation, mitochondrial function, and electrocortical activity by small-volume resuscitation with terlipressin in a rat model of haemorrhagic shock. Br J Anaesth. 2018;120:1245–54.PubMedCrossRef
39.
go back to reference Martínez MC, Vila JM, Aldasoro M, Medina P, Flor B, Lluch S. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin. Br J Pharmacol. 1994;113:419–24.PubMedPubMedCentralCrossRef Martínez MC, Vila JM, Aldasoro M, Medina P, Flor B, Lluch S. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin. Br J Pharmacol. 1994;113:419–24.PubMedPubMedCentralCrossRef
40.
go back to reference García-Villalón AL, Garcia JL, Fernández N, Monge L, Gómez B, Diéguez G. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol. 1996;118:1848–54.PubMedPubMedCentralCrossRef García-Villalón AL, Garcia JL, Fernández N, Monge L, Gómez B, Diéguez G. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol. 1996;118:1848–54.PubMedPubMedCentralCrossRef
41.
go back to reference Hiltebrand LB, Krejci V, Jakob SM, Takala J, Sigurdsson GH. Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiol J Am Soc Anesthesiol. 2007;106:1156–67. Hiltebrand LB, Krejci V, Jakob SM, Takala J, Sigurdsson GH. Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiol J Am Soc Anesthesiol. 2007;106:1156–67.
42.
go back to reference Boerma EC, van der Voort PHJ, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med. 2007;35:1055–60.PubMedCrossRef Boerma EC, van der Voort PHJ, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med. 2007;35:1055–60.PubMedCrossRef
43.
go back to reference Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Phys. 1985;249:G549–56. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Phys. 1985;249:G549–56.
44.
go back to reference Goetz KL, Bond GC, Hermreck AS, Trank JW. Plasma ADH levels following a decrease in mean atrial transmural pressure in dogs. Am J Phys. 1970;219:1424–8.CrossRef Goetz KL, Bond GC, Hermreck AS, Trank JW. Plasma ADH levels following a decrease in mean atrial transmural pressure in dogs. Am J Phys. 1970;219:1424–8.CrossRef
45.
go back to reference Errington ML, Rocha e Silva M. Vasopressin clearance and secretion during haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol. 1972;227:395–418.PubMedPubMedCentralCrossRef Errington ML, Rocha e Silva M. Vasopressin clearance and secretion during haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol. 1972;227:395–418.PubMedPubMedCentralCrossRef
46.
go back to reference Picker O, Schwarte LA, Roth HJ, Greve J, Scheeren TWL. Comparison of the role of endothelin, vasopressin and angiotensin in arterial pressure regulation during sevoflurane anaesthesia in dogs. Br J Anaesth. 2004;92:102–8.PubMedCrossRef Picker O, Schwarte LA, Roth HJ, Greve J, Scheeren TWL. Comparison of the role of endothelin, vasopressin and angiotensin in arterial pressure regulation during sevoflurane anaesthesia in dogs. Br J Anaesth. 2004;92:102–8.PubMedCrossRef
47.
go back to reference Preibisz JJ, Sealey JE, Laragh JH, Cody RJ, Weksler BB. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertens Dallas Tex 1979. 1983;5:I129–38. Preibisz JJ, Sealey JE, Laragh JH, Cody RJ, Weksler BB. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertens Dallas Tex 1979. 1983;5:I129–38.
48.
go back to reference Yilmazlar A, Yilmazlar T, Ozcan B, Kutlay O. Vasopressin, renin, and adrenocorticotropic hormone levels during the resuscitation of hemorrhagic shock in dogs. J Emerg Med. 2000;18:405–8.PubMedCrossRef Yilmazlar A, Yilmazlar T, Ozcan B, Kutlay O. Vasopressin, renin, and adrenocorticotropic hormone levels during the resuscitation of hemorrhagic shock in dogs. J Emerg Med. 2000;18:405–8.PubMedCrossRef
49.
go back to reference Sun Q, Dimopoulos G, Nguyen DN, Tu Z, Nagy N, Hoang AD, et al. Low-dose vasopressin in the treatment of septic shock in sheep. Am J Respir Crit Care Med. 2003;168:481–6.PubMedCrossRef Sun Q, Dimopoulos G, Nguyen DN, Tu Z, Nagy N, Hoang AD, et al. Low-dose vasopressin in the treatment of septic shock in sheep. Am J Respir Crit Care Med. 2003;168:481–6.PubMedCrossRef
50.
go back to reference Knotzer H, Maier S, Dünser MW, Hasibeder WR, Hausdorfer H, Brandner J, et al. Arginine vasopressin does not alter mucosal tissue oxygen tension and oxygen supply in an acute endotoxemic pig model. Intensive Care Med. 2006;32:170–4.PubMedCrossRef Knotzer H, Maier S, Dünser MW, Hasibeder WR, Hausdorfer H, Brandner J, et al. Arginine vasopressin does not alter mucosal tissue oxygen tension and oxygen supply in an acute endotoxemic pig model. Intensive Care Med. 2006;32:170–4.PubMedCrossRef
51.
go back to reference Asfar P, Pierrot M, Veal N, Moal F, Oberti F, Croquet V, et al. Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med. 2003;31:215–20.PubMedCrossRef Asfar P, Pierrot M, Veal N, Moal F, Oberti F, Croquet V, et al. Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med. 2003;31:215–20.PubMedCrossRef
52.
go back to reference Martikainen TJ, Tenhunen JJ, Uusaro A, Ruokonen E. The effects of vasopressin on systemic and splanchnic hemodynamics and metabolism in endotoxin shock. Anesth Analg. 2003;97:1756–63.PubMedCrossRef Martikainen TJ, Tenhunen JJ, Uusaro A, Ruokonen E. The effects of vasopressin on systemic and splanchnic hemodynamics and metabolism in endotoxin shock. Anesth Analg. 2003;97:1756–63.PubMedCrossRef
53.
go back to reference Westphal M, Freise H, Kehrel BE, Bone H-G, Van Aken H, Sielenkämper AW. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32:194–200.PubMedCrossRef Westphal M, Freise H, Kehrel BE, Bone H-G, Van Aken H, Sielenkämper AW. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32:194–200.PubMedCrossRef
54.
go back to reference Williams TD, Da Costa D, Mathias CJ, Bannister R, Lightman SL. Pressor effect of arginine vasopressin in progressive autonomic failure. Clin Sci Lond Engl 1979. 1986;71:173–8. Williams TD, Da Costa D, Mathias CJ, Bannister R, Lightman SL. Pressor effect of arginine vasopressin in progressive autonomic failure. Clin Sci Lond Engl 1979. 1986;71:173–8.
Metadata
Title
Exogenous vasopressin dose-dependently modulates gastric microcirculatory oxygenation in dogs via V1A receptor
Authors
Richard Truse
Steven Grewe
Anna Herminghaus
Jan Schulz
Andreas P. M. Weber
Tabea Mettler-Altmann
Inge Bauer
Olaf Picker
Christian Vollmer
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2643-y

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue