Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Respiratory Distress-Syndrome | Research

Low-flow assessment of current ECMO/ECCO2R rotary blood pumps and the potential effect on hemocompatibility

Authors: Sascha Gross-Hardt, Felix Hesselmann, Jutta Arens, Ulrich Steinseifer, Leen Vercaemst, Wolfram Windisch, Daniel Brodie, Christian Karagiannidis

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Extracorporeal carbon dioxide removal (ECCO2R) uses an extracorporeal circuit to directly remove carbon dioxide from the blood either in lieu of mechanical ventilation or in combination with it. While the potential benefits of the technology are leading to increasing use, there are very real risks associated with it. Several studies demonstrated major bleeding and clotting complications, often associated with hemolysis and poorer outcomes in patients receiving ECCO2R. A better understanding of the risks originating specifically from the rotary blood pump component of the circuit is urgently needed.

Methods

High-resolution computational fluid dynamics was used to calculate the hemodynamics and hemocompatibility of three current rotary blood pumps for various pump flow rates.

Results

The hydraulic efficiency dramatically decreases to 5–10% if operating at blood flow rates below 1 L/min, the pump internal flow recirculation rate increases 6–12-fold in these flow ranges, and adverse effects are increased due to multiple exposures to high shear stress. The deleterious consequences include a steep increase in hemolysis and destruction of platelets.

Conclusions

The role of blood pumps in contributing to adverse effects at the lower blood flow rates used during ECCO2R is shown here to be significant. Current rotary blood pumps should be used with caution if operated at blood flow rates below 2 L/min, because of significant and high recirculation, shear stress, and hemolysis. There is a clear and urgent need to design dedicated blood pumps which are optimized for blood flow rates in the range of 0.5–1.5 L/min.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brodie D, Slutsky AS, Combes A. Extracorporeal life support for adults with respiratory failure and related indications: a review. JAMA. 2019;322(6):557–68.CrossRef Brodie D, Slutsky AS, Combes A. Extracorporeal life support for adults with respiratory failure and related indications: a review. JAMA. 2019;322(6):557–68.CrossRef
2.
go back to reference Combes A, Fanelli V, Pham T, Ranieri VM, European Society of Intensive Care Medicine Trials G, the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CORfN-OmtsAi”. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med. 2019;45(5):592–600.CrossRef Combes A, Fanelli V, Pham T, Ranieri VM, European Society of Intensive Care Medicine Trials G, the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CORfN-OmtsAi”. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med. 2019;45(5):592–600.CrossRef
3.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.CrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.CrossRef
4.
go back to reference Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, Muller T, Windisch W. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42(5):889–96.CrossRef Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, Muller T, Windisch W. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42(5):889–96.CrossRef
5.
go back to reference Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S, Frings D, Nierhaus A, Wegscheider K, Kluge S. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42(9):1437–44.CrossRef Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S, Frings D, Nierhaus A, Wegscheider K, Kluge S. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42(9):1437–44.CrossRef
6.
go back to reference Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P, Dell’Amore A, Urbino R, Mascia L, Evangelista A, et al. Extracorporeal Co2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43(1):120–7.CrossRef Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P, Dell’Amore A, Urbino R, Mascia L, Evangelista A, et al. Extracorporeal Co2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43(1):120–7.CrossRef
7.
go back to reference Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L, McAuley DF, International EN. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6(11):874–84.CrossRef Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L, McAuley DF, International EN. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6(11):874–84.CrossRef
8.
go back to reference Biscotti M, Gannon WD, Agerstrand C, Abrams D, Sonett J, Brodie D, Bacchetta M. Awake extracorporeal membrane oxygenation as bridge to lung transplantation: a 9-year experience. Ann Thorac Surg. 2017;104(2):412–9.CrossRef Biscotti M, Gannon WD, Agerstrand C, Abrams D, Sonett J, Brodie D, Bacchetta M. Awake extracorporeal membrane oxygenation as bridge to lung transplantation: a 9-year experience. Ann Thorac Surg. 2017;104(2):412–9.CrossRef
9.
go back to reference Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef
10.
go back to reference Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Juni P, Brodie D, Slutsky AS, Combes A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–9.CrossRef Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Juni P, Brodie D, Slutsky AS, Combes A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–9.CrossRef
11.
go back to reference Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, Sinderby C, Windisch W. Control of respiratory drive by extracorporeal CO2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit Care. 2019;23(1):135.CrossRef Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, Sinderby C, Windisch W. Control of respiratory drive by extracorporeal CO2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit Care. 2019;23(1):135.CrossRef
12.
go back to reference Allardet-Servent J, Castanier M, Signouret T, Soundaravelou R, Lepidi A, Seghboyan JM. Safety and efficacy of combined extracorporeal CO2 removal and renal replacement therapy in patients with acute respiratory distress syndrome and acute kidney injury: the pulmonary and renal support in acute respiratory distress syndrome study. Crit Care Med. 2015;43(12):2570–81.CrossRef Allardet-Servent J, Castanier M, Signouret T, Soundaravelou R, Lepidi A, Seghboyan JM. Safety and efficacy of combined extracorporeal CO2 removal and renal replacement therapy in patients with acute respiratory distress syndrome and acute kidney injury: the pulmonary and renal support in acute respiratory distress syndrome study. Crit Care Med. 2015;43(12):2570–81.CrossRef
13.
go back to reference Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care. 2018;22(1):122.CrossRef Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care. 2018;22(1):122.CrossRef
14.
go back to reference Nentwich J, Wichmann D, Kluge S, Lindau S, Mutlak H, John S. Low-flow CO2 removal in combination with renal replacement therapy effectively reduces ventilation requirements in hypercapnic patients: a pilot study. Ann Intensive Care. 2019;9(1):3.CrossRef Nentwich J, Wichmann D, Kluge S, Lindau S, Mutlak H, John S. Low-flow CO2 removal in combination with renal replacement therapy effectively reduces ventilation requirements in hypercapnic patients: a pilot study. Ann Intensive Care. 2019;9(1):3.CrossRef
15.
go back to reference Zanella A, Castagna L, Salerno D, Scaravilli V, Abd El Aziz El Sayed Deab S, Magni F, Giani M, Mazzola S, Albertini M, Patroniti N, et al. Respiratory electrodialysis. A novel, highly efficient extracorporeal CO2 removal technique. Am J Respir Crit Care Med. 2015;192(6):719–26. Zanella A, Castagna L, Salerno D, Scaravilli V, Abd El Aziz El Sayed Deab S, Magni F, Giani M, Mazzola S, Albertini M, Patroniti N, et al. Respiratory electrodialysis. A novel, highly efficient extracorporeal CO2 removal technique. Am J Respir Crit Care Med. 2015;192(6):719–26.
16.
go back to reference Burki NK, Mani RK, Herth FJ, Schmidt W, Teschler H, Bonin F, Becker H, Randerath WJ, Stieglitz S, Hagmeyer L, et al. A novel extracorporeal CO (2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143(3):678–86.CrossRef Burki NK, Mani RK, Herth FJ, Schmidt W, Teschler H, Bonin F, Becker H, Randerath WJ, Stieglitz S, Hagmeyer L, et al. A novel extracorporeal CO (2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143(3):678–86.CrossRef
17.
go back to reference Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, Cancio LC. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39(6):1382–7.CrossRef Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, Cancio LC. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39(6):1382–7.CrossRef
18.
go back to reference Conrad SA, Broman LM, Taccone FS, Lorusso R, Malfertheiner MV, Pappalardo F, Nardo MD, Belliato M, Grazioli L, Barbaro RP, et al. The Extracorporeal Life Support Organization Maastricht Treaty for Nomenclature in Extracorporeal Life Support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med. 2018;198(4):447–51.CrossRef Conrad SA, Broman LM, Taccone FS, Lorusso R, Malfertheiner MV, Pappalardo F, Nardo MD, Belliato M, Grazioli L, Barbaro RP, et al. The Extracorporeal Life Support Organization Maastricht Treaty for Nomenclature in Extracorporeal Life Support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med. 2018;198(4):447–51.CrossRef
19.
go back to reference Karagiannidis C, Hesselmann F, Fan E. Physiological and technical considerations of extracorporeal CO2 removal. Crit Care. 2019;23(1):75.CrossRef Karagiannidis C, Hesselmann F, Fan E. Physiological and technical considerations of extracorporeal CO2 removal. Crit Care. 2019;23(1):75.CrossRef
20.
go back to reference Karagiannidis C, Kampe KA, Sipmann FS, Larsson A, Hedenstierna G, Windisch W, Mueller T. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18(3):R124.CrossRef Karagiannidis C, Kampe KA, Sipmann FS, Larsson A, Hedenstierna G, Windisch W, Mueller T. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18(3):R124.CrossRef
21.
go back to reference Karagiannidis C, Strassmann S, Brodie D, Ritter P, Larsson A, Borchardt R, Windisch W. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med Exp. 2017;5(1):34.CrossRef Karagiannidis C, Strassmann S, Brodie D, Ritter P, Larsson A, Borchardt R, Windisch W. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med Exp. 2017;5(1):34.CrossRef
22.
go back to reference Strassmann S, Merten M, Schafer S, de Moll J, Brodie D, Larsson A, Windisch W, Karagiannidis C. Impact of sweep gas flow on extracorporeal CO2 removal (ECCO2R). Intensive Care Med Exp. 2019;7(1):17.CrossRef Strassmann S, Merten M, Schafer S, de Moll J, Brodie D, Larsson A, Windisch W, Karagiannidis C. Impact of sweep gas flow on extracorporeal CO2 removal (ECCO2R). Intensive Care Med Exp. 2019;7(1):17.CrossRef
23.
go back to reference Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med. 2015;41(10):1752–62.CrossRef Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med. 2015;41(10):1752–62.CrossRef
24.
go back to reference Omar HR, Mirsaeidi M, Socias S, Sprenker C, Caldeira C, Camporesi EM, Mangar D. Plasma free hemoglobin is an independent predictor of mortality among patients on extracorporeal membrane oxygenation support. PLoS One. 2015;10(4):e0124034.CrossRef Omar HR, Mirsaeidi M, Socias S, Sprenker C, Caldeira C, Camporesi EM, Mangar D. Plasma free hemoglobin is an independent predictor of mortality among patients on extracorporeal membrane oxygenation support. PLoS One. 2015;10(4):e0124034.CrossRef
25.
go back to reference Okochi S, Cheung EW, Barton S, Zenilman A, Shakoor A, Street C, Streltsova S, Chan C, Brewer MP, Middlesworth W. An analysis of risk factors for hemolysis in children on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2018;19(11):1059–66.CrossRef Okochi S, Cheung EW, Barton S, Zenilman A, Shakoor A, Street C, Streltsova S, Chan C, Brewer MP, Middlesworth W. An analysis of risk factors for hemolysis in children on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2018;19(11):1059–66.CrossRef
26.
go back to reference Lehle K, Philipp A, Zeman F, Lunz D, Lubnow M, Wendel HP, Gobolos L, Schmid C, Muller T. Technical-induced hemolysis in patients with respiratory failure supported with Veno-venous ECMO - prevalence and risk factors. PLoS One. 2015;10(11):e0143527.CrossRef Lehle K, Philipp A, Zeman F, Lunz D, Lubnow M, Wendel HP, Gobolos L, Schmid C, Muller T. Technical-induced hemolysis in patients with respiratory failure supported with Veno-venous ECMO - prevalence and risk factors. PLoS One. 2015;10(11):e0143527.CrossRef
27.
go back to reference Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys. 2011;33(3):263–80.CrossRef Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys. 2011;33(3):263–80.CrossRef
28.
go back to reference Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA, Griffith BP, Wu ZJ. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artif Organs. 2010;34(12):1099–113.CrossRef Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA, Griffith BP, Wu ZJ. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artif Organs. 2010;34(12):1099–113.CrossRef
29.
go back to reference Zhang J, Zhang P, Fraser KH, Griffith BP, Wu ZJ. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device. Artif Organs. 2013;37(4):380–9.CrossRef Zhang J, Zhang P, Fraser KH, Griffith BP, Wu ZJ. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device. Artif Organs. 2013;37(4):380–9.CrossRef
30.
go back to reference Burgreen GW, Antaki JF, Wu ZJ, Holmes AJ. Computational fluid dynamics as a development tool for rotary blood pumps. Artif Organs. 2001;25(5):336–40.CrossRef Burgreen GW, Antaki JF, Wu ZJ, Holmes AJ. Computational fluid dynamics as a development tool for rotary blood pumps. Artif Organs. 2001;25(5):336–40.CrossRef
31.
go back to reference Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng. 2012;134(8):081002.CrossRef Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng. 2012;134(8):081002.CrossRef
32.
go back to reference Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology. 1994;31(5):565–86.CrossRef Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology. 1994;31(5):565–86.CrossRef
33.
go back to reference Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13(5):300–6.CrossRef Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13(5):300–6.CrossRef
34.
go back to reference Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs. 2004;28(11):1016–25.CrossRef Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs. 2004;28(11):1016–25.CrossRef
35.
go back to reference Farinas MI, Garon A, Lacasse D, N’Dri D. Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng. 2006;128(5):688–96.CrossRef Farinas MI, Garon A, Lacasse D, N’Dri D. Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng. 2006;128(5):688–96.CrossRef
36.
go back to reference Hellums JD. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann Biomed Eng. 1994;22(5):445–55.CrossRef Hellums JD. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann Biomed Eng. 1994;22(5):445–55.CrossRef
37.
go back to reference Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30(3):168–77.CrossRef Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30(3):168–77.CrossRef
38.
go back to reference Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 2012;58(4):363–72.CrossRef Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 2012;58(4):363–72.CrossRef
39.
go back to reference Fuchs G, Berg N, Broman LM, Prahl Wittberg L. Flow-induced platelet activation in components of the extracorporeal membrane oxygenation circuit. Sci Rep. 2018;8(1):13985.CrossRef Fuchs G, Berg N, Broman LM, Prahl Wittberg L. Flow-induced platelet activation in components of the extracorporeal membrane oxygenation circuit. Sci Rep. 2018;8(1):13985.CrossRef
Metadata
Title
Low-flow assessment of current ECMO/ECCO2R rotary blood pumps and the potential effect on hemocompatibility
Authors
Sascha Gross-Hardt
Felix Hesselmann
Jutta Arens
Ulrich Steinseifer
Leen Vercaemst
Wolfram Windisch
Daniel Brodie
Christian Karagiannidis
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2622-3

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue