Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Nosocomial Pneumonia | Research

Alterations of the iNKT cell compartment in brain-injured patients

Authors: Allan Patinec, Jézabel Rocher, Mickael Vourc’h, Antoine Roquilly, Karim Asehnoune, Jacques Le Pendu

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Brain injury (BI) induces a state of immunodepression leading to pneumonia. We investigated the invariant natural killer T (iNKT) cell compartment.

Methods

This is an observational study in two surgical intensive care units (ICUs) of a single institution and a research laboratory. Clinical data and samples from a prospective cohort were extracted. Severe brain-injured patients (n = 33) and sex- and age-matched healthy donors (n = 40) were studied.

Results

We observed the presence of IL-10 in serum, a loss of IFN-γ and IL-13 production by peripheral blood mononuclear cells (PBMCs) following IL-2 stimulation, and downregulation of HLA-DR expression on both monocytes and B cells early after BI. Inversely, CD1d, the HLA class I-like molecule involved in antigen presentation to iNKT cells, was over-expressed on patients’ monocytes and B cells. The antigen-presenting activity to iNKT cells of PBMCs was increased in the patients who developed pneumonia, but not in those who remained free of infection. Frequencies of iNKT cells among PBMCs were dramatically decreased in patients regardless of their infection status. Following amplification, an increased frequency of CD4+ iNKT cells producing IL-4 was noticed in the group of patients free of infection compared with those who became infected and with healthy donors. Finally, serum from BI patients inhibited the iNKT cells’ specific response as well as the non-specific IL-2 stimulation of PBMCs, and the expression of the beta-2 adrenergic receptor was elevated at the surface of patients T lymphocytes.

Conclusions

We observed severe alterations of the iNKT cell compartment, including the presence of inhibitory serum factors. We demonstrate for the first time that the decreased capacity to present antigens is not a generalized phenomenon because whereas the expression of HLA-DR molecules is decreased, the capacity for presenting glycolipids through CD1d expression is higher in patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Asehnoune K, Seguin P, Allary J, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. 2014;2:706–16.PubMedCrossRef Asehnoune K, Seguin P, Allary J, et al. Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. 2014;2:706–16.PubMedCrossRef
2.
go back to reference Roquilly A, Mahe PJ, Seguin P, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA. 2011;305:1201–9.PubMedCrossRef Roquilly A, Mahe PJ, Seguin P, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA. 2011;305:1201–9.PubMedCrossRef
3.
go back to reference Roquilly A, Feuillet F, Seguin P, et al. Empiric antimicrobial therapy for ventilator-associated pneumonia after brain injury. Eur Respir J. 2016;47:1219–28.PubMedCrossRef Roquilly A, Feuillet F, Seguin P, et al. Empiric antimicrobial therapy for ventilator-associated pneumonia after brain injury. Eur Respir J. 2016;47:1219–28.PubMedCrossRef
4.
go back to reference Bronchard R, Albaladejo P, Brezac G, et al. Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology. 2004;100:234–9.PubMedCrossRef Bronchard R, Albaladejo P, Brezac G, et al. Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology. 2004;100:234–9.PubMedCrossRef
5.
go back to reference Meisel C, Schwab JM, Prass K, et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6:775–86.PubMedCrossRef Meisel C, Schwab JM, Prass K, et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6:775–86.PubMedCrossRef
6.
go back to reference Prass K, Meisel C, Höflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198:725–36.PubMedPubMedCentralCrossRef Prass K, Meisel C, Höflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198:725–36.PubMedPubMedCentralCrossRef
7.
go back to reference Deknuydt F, Roquilly A, Cinotti R, et al. An in vitro model of mycobacterial granuloma to investigate the immune response in brain-injured patients. Crit Care Med. 2013;41:245–54.PubMedCrossRef Deknuydt F, Roquilly A, Cinotti R, et al. An in vitro model of mycobacterial granuloma to investigate the immune response in brain-injured patients. Crit Care Med. 2013;41:245–54.PubMedCrossRef
8.
go back to reference Hinson HE, Sheth KN. Manifestations of the hyperadrenergic state after acute brain injury. Curr Opin Crit Care. 2012;18:139–45.PubMedCrossRef Hinson HE, Sheth KN. Manifestations of the hyperadrenergic state after acute brain injury. Curr Opin Crit Care. 2012;18:139–45.PubMedCrossRef
9.
go back to reference Wong CHY, Jenne CN, Lee W-Y, et al. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 2011;334:101–5.PubMedCrossRef Wong CHY, Jenne CN, Lee W-Y, et al. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 2011;334:101–5.PubMedCrossRef
10.
go back to reference Porcelli S, Yockey C, Brenner M, et al. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med. 1993;178:1–16.PubMedCrossRef Porcelli S, Yockey C, Brenner M, et al. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med. 1993;178:1–16.PubMedCrossRef
11.
go back to reference Bendelac A, Lantz O, Quimby M, et al. CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995;268:863–5.PubMedCrossRef Bendelac A, Lantz O, Quimby M, et al. CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995;268:863–5.PubMedCrossRef
12.
go back to reference Montoya CJ, Pollard D, Martinson J, et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology. 2007;122:1–14.PubMedPubMedCentralCrossRef Montoya CJ, Pollard D, Martinson J, et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology. 2007;122:1–14.PubMedPubMedCentralCrossRef
14.
go back to reference Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13:101–17.PubMedCrossRef Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13:101–17.PubMedCrossRef
15.
go back to reference American Thoracic Society. Infectious Diseases Society of America: guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef American Thoracic Society. Infectious Diseases Society of America: guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef
16.
go back to reference Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.PubMedCrossRef Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.PubMedCrossRef
17.
go back to reference Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.PubMedCrossRef Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.PubMedCrossRef
18.
go back to reference Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons: guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007; 24 Suppl 1:S1–106. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons: guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007; 24 Suppl 1:S1–106.
19.
go back to reference Hunault J, Diswall M, J-CC F, et al. 3-fluoro- and 3,3-difluoro-3,4-dideoxy-KRN7000 analogues as new potent immunostimulator agents: total synthesis and biological evaluation in human invariant natural killer T cells and mice. J Med Chem. 2012;55:1227–41.PubMedCrossRef Hunault J, Diswall M, J-CC F, et al. 3-fluoro- and 3,3-difluoro-3,4-dideoxy-KRN7000 analogues as new potent immunostimulator agents: total synthesis and biological evaluation in human invariant natural killer T cells and mice. J Med Chem. 2012;55:1227–41.PubMedCrossRef
20.
go back to reference Roquilly A, David G, Cinotti R, et al. Role of IL-12 in overcoming the low responsiveness of NK cells to missing self after traumatic brain injury. Clin Immunol Orlando Fla. 2017;177:87–94.CrossRef Roquilly A, David G, Cinotti R, et al. Role of IL-12 in overcoming the low responsiveness of NK cells to missing self after traumatic brain injury. Clin Immunol Orlando Fla. 2017;177:87–94.CrossRef
21.
go back to reference Chenouard A, Chesneau M, Braza F, et al. Phenotype and functions of B cells in patients with acute brain injuries. Mol Immunol. 2015;68:350–6.PubMedCrossRef Chenouard A, Chesneau M, Braza F, et al. Phenotype and functions of B cells in patients with acute brain injuries. Mol Immunol. 2015;68:350–6.PubMedCrossRef
22.
go back to reference Gumperz JE, Miyake S, Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002;195:625–36.PubMedPubMedCentralCrossRef Gumperz JE, Miyake S, Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002;195:625–36.PubMedPubMedCentralCrossRef
23.
go back to reference Lukaszewicz A-CC, Grienay M, Matthieu R-R, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. 2009;37:2746–52.PubMed Lukaszewicz A-CC, Grienay M, Matthieu R-R, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. 2009;37:2746–52.PubMed
24.
go back to reference An B, Lim J-Y, Jeong S, et al. CD1d is a novel cell-surface marker for human monocytic myeloid-derived suppressor cells with T cell suppression activity in peripheral blood after allogeneic hematopoietic stem cell transplantation. Biochem Biophys Res Commun. 2018;495:519–25.PubMedCrossRef An B, Lim J-Y, Jeong S, et al. CD1d is a novel cell-surface marker for human monocytic myeloid-derived suppressor cells with T cell suppression activity in peripheral blood after allogeneic hematopoietic stem cell transplantation. Biochem Biophys Res Commun. 2018;495:519–25.PubMedCrossRef
25.
go back to reference Oleinika K, Rosser EC, Matei DE, et al. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun. 2018;9:684.PubMedPubMedCentralCrossRef Oleinika K, Rosser EC, Matei DE, et al. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun. 2018;9:684.PubMedPubMedCentralCrossRef
26.
go back to reference De Raedt S, De Vos A, Van Binst A-MM, et al. High natural killer cell number might identify stroke patients at risk of developing infections. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e71.PubMedPubMedCentralCrossRef De Raedt S, De Vos A, Van Binst A-MM, et al. High natural killer cell number might identify stroke patients at risk of developing infections. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e71.PubMedPubMedCentralCrossRef
Metadata
Title
Alterations of the iNKT cell compartment in brain-injured patients
Authors
Allan Patinec
Jézabel Rocher
Mickael Vourc’h
Antoine Roquilly
Karim Asehnoune
Jacques Le Pendu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2518-2

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue