Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Pharmacokinetics | Research

Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient: a cross-sectional study

Authors: Lucas M. Fleuren, Luca F. Roggeveen, Tingjie Guo, Petr Waldauf, Peter H. J. van der Voort, Rob J. Bosman, Eleonora L. Swart, Armand R. J. Girbes, Paul W. G. Elbers

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Antibiotic exposure in intensive care patients with sepsis is frequently inadequate and is associated with poorer outcomes. Antibiotic dosing is challenging in the intensive care, as critically ill patients have altered and fluctuating antibiotic pharmacokinetics that make current one-size-fits-all regimens unsatisfactory. Real-time bedside dosing software is not available yet, and therapeutic drug monitoring is typically used for few antibiotic classes and only allows for delayed dosing adaptation. Thus, adequate and timely antibiotic dosing continues to rely largely on the level of pharmacokinetic expertise in the ICU. Therefore, we set out to assess the level of knowledge on antibiotic pharmacokinetics among these intensive care professionals.

Methods

In May 2018, we carried out a cross-sectional study by sending out an online survey on antibiotic dosing to more than 20,000 intensive care professionals. Questions were designed to cover relevant topics in pharmacokinetics related to intensive care antibiotic dosing. The preliminary pass mark was set by members of the examination committee for the European Diploma of Intensive Care using a modified Angoff approach. The final pass mark was corrected for clinical relevance as assessed for each question by international experts on pharmacokinetics.

Results

A total of 1448 respondents completed the survey. Most of the respondents were intensivists (927 respondents, 64%) from 97 countries. Nearly all questions were considered clinically relevant by pharmacokinetic experts. The pass mark corrected for clinical relevance was 52.8 out of 93.7 points. Pass rates were 42.5% for intensivists, 36.1% for fellows, 24.8% for residents, and 5.8% for nurses. Scores without correction for clinical relevance were worse, indicating that respondents perform better on more relevant topics. Correct answers and concise clinical background are provided.

Conclusions

Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient. This should be addressed given the importance of adequate antibiotic exposure in critically ill patients with sepsis. Solutions include improved education, intensified pharmacy support, therapeutic drug monitoring, or the use of real-time bedside dosing software. Questions may provide useful for teaching purposes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med [Internet]. 2016 Feb 1 [cited 2018 Nov 22];193(3):259–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26414292. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med [Internet]. 2016 Feb 1 [cited 2018 Nov 22];193(3):259–72. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26414292.
6.
go back to reference De Waele JJ, Lipman J, Akova M, Bassetti M, Dimopoulos G, Kaukonen M, et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med [Internet]. 2014 Sep 23 [cited 2018 Nov 22];40(9):1340–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25053248. De Waele JJ, Lipman J, Akova M, Bassetti M, Dimopoulos G, Kaukonen M, et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med [Internet]. 2014 Sep 23 [cited 2018 Nov 22];40(9):1340–51. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25053248.
7.
go back to reference Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother [Internet]. 2016 Jan [cited 2018 Nov 22];71(1):196–207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26433783. Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother [Internet]. 2016 Jan [cited 2018 Nov 22];71(1):196–207. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26433783.
8.
go back to reference Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis [Internet]. 2014 Apr 15 [cited 2018 Nov 22];58(8):1072–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24429437. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis [Internet]. 2014 Apr 15 [cited 2018 Nov 22];58(8):1072–83. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24429437.
9.
go back to reference Ehmann L, Zoller M, Minichmayr IK, Scharf C, Maier B, Schmitt M V., et al. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Crit Care [Internet]. 2017 Dec 21 [cited 2018 Nov 26];21(1):263. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29058601. Ehmann L, Zoller M, Minichmayr IK, Scharf C, Maier B, Schmitt M V., et al. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Crit Care [Internet]. 2017 Dec 21 [cited 2018 Nov 26];21(1):263. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29058601.
10.
go back to reference Zander J, Döbbeler G, Nagel D, Maier B, Scharf C, Huseyn-Zada M, et al. Piperacillin concentration in relation to therapeutic range in critically ill patients – a prospective observational study. Crit Care [Internet]. 2016 Dec 4 [cited 2018 Nov 26];20(1):79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27039986. Zander J, Döbbeler G, Nagel D, Maier B, Scharf C, Huseyn-Zada M, et al. Piperacillin concentration in relation to therapeutic range in critically ill patients – a prospective observational study. Crit Care [Internet]. 2016 Dec 4 [cited 2018 Nov 26];20(1):79. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27039986.
11.
go back to reference Khachman D, Conil J-M, Georges B, Saivin S, Houin G, Toutain P-L, et al. Optimizing ciprofloxacin dosing in intensive care unit patients through the use of population pharmacokinetic-pharmacodynamic analysis and Monte Carlo simulations. J Antimicrob Chemother [Internet]. 2011 Aug 1 [cited 2018 Nov 22];66(8):1798–809. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21653603. Khachman D, Conil J-M, Georges B, Saivin S, Houin G, Toutain P-L, et al. Optimizing ciprofloxacin dosing in intensive care unit patients through the use of population pharmacokinetic-pharmacodynamic analysis and Monte Carlo simulations. J Antimicrob Chemother [Internet]. 2011 Aug 1 [cited 2018 Nov 22];66(8):1798–809. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21653603.
12.
go back to reference van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care [Internet]. 2008 Sep [cited 2018 Nov 22];23(3):422–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18725050. van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care [Internet]. 2008 Sep [cited 2018 Nov 22];23(3):422–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18725050.
13.
go back to reference Roberts JA, Abdul-Aziz H, Lipman JR, Mouton JW, Vinks AA, Felton TW, et al. Review Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis [Internet]. 2014 [cited 2018 Nov 22];14:498–509. Available from: http://dx.doi.org/10.1016/ Roberts JA, Abdul-Aziz H, Lipman JR, Mouton JW, Vinks AA, Felton TW, et al. Review Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis [Internet]. 2014 [cited 2018 Nov 22];14:498–509. Available from: http://​dx.​doi.​org/​10.​1016/​
18.
19.
go back to reference Bion J, Rothen HU. CRITICAL CARE PERSPECTIVE Models for intensive care training a European perspective. 2014 [cited 2018 Nov 20]; Available from: www.atsjournals.org Bion J, Rothen HU. CRITICAL CARE PERSPECTIVE Models for intensive care training a European perspective. 2014 [cited 2018 Nov 20]; Available from: www.​atsjournals.​org
20.
go back to reference Gupta R, Zad O, Jimenez E. Analysis of the variations between Accreditation Council for Graduate Medical Education requirements for critical care training programs and their effects on the current critical care workforce. J Crit Care [Internet]. 2013 Dec [cited 2018 Nov 20];28(6):1042–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23890938. Gupta R, Zad O, Jimenez E. Analysis of the variations between Accreditation Council for Graduate Medical Education requirements for critical care training programs and their effects on the current critical care workforce. J Crit Care [Internet]. 2013 Dec [cited 2018 Nov 20];28(6):1042–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23890938.
21.
go back to reference CCSC Task Force on Critical Care Educational Pathways in Internal Medicine SM, Martin GS, Baumann MH, Curtis JR, Farmer JC, Fessler HE, et al. Training internists to meet critical care needs in the United States: a consensus statement from the Critical Care Societies Collaborative (CCSC). Crit Care Med [Internet]. 2014 May [cited 2018 Nov 20];42(5):1272–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24637881. CCSC Task Force on Critical Care Educational Pathways in Internal Medicine SM, Martin GS, Baumann MH, Curtis JR, Farmer JC, Fessler HE, et al. Training internists to meet critical care needs in the United States: a consensus statement from the Critical Care Societies Collaborative (CCSC). Crit Care Med [Internet]. 2014 May [cited 2018 Nov 20];42(5):1272–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24637881.
27.
go back to reference Dwyer T, Wright S, Kulasegaram KM, Theodoropoulos J, Chahal J, Wasserstein D, et al. How to set the bar in competency-based medical education: standard setting after an Objective Structured Clinical Examination (OSCE). BMC Med Educ [Internet]. 2016 Dec 4 [cited 2018 Nov 26];16(1):1. Available from: http://www.biomedcentral.com/1472-6920/16/1 Dwyer T, Wright S, Kulasegaram KM, Theodoropoulos J, Chahal J, Wasserstein D, et al. How to set the bar in competency-based medical education: standard setting after an Objective Structured Clinical Examination (OSCE). BMC Med Educ [Internet]. 2016 Dec 4 [cited 2018 Nov 26];16(1):1. Available from: http://​www.​biomedcentral.​com/​1472-6920/​16/​1
39.
go back to reference Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care [Internet]. 2013 Feb 28 [cited 2019 Jan 6];17(1):R35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23448570. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care [Internet]. 2013 Feb 28 [cited 2019 Jan 6];17(1):R35. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23448570.
Metadata
Title
Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient: a cross-sectional study
Authors
Lucas M. Fleuren
Luca F. Roggeveen
Tingjie Guo
Petr Waldauf
Peter H. J. van der Voort
Rob J. Bosman
Eleonora L. Swart
Armand R. J. Girbes
Paul W. G. Elbers
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2438-1

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue