Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Research

Continuous monitoring of intrinsic PEEP based on expired CO2 kinetics: an experimental validation study

Authors: Sarah Heili-Frades, Fernando Suarez-Sipmann, Arnoldo Santos, Maria Pilar Carballosa, Alba Naya-Prieto, Carlos Castilla-Reparaz, Maria Jesús Rodriguez-Nieto, Nicolás González-Mangado, German Peces -Barba

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Quantification of intrinsic PEEP (PEEPi) has important implications for patients subjected to invasive mechanical ventilation. A new non-invasive breath-by-breath method (etCO2D) for determination of PEEPi is evaluated.

Methods

In 12 mechanically ventilated pigs, dynamic hyperinflation was induced by interposing a resistance in the endotracheal tube. Airway pressure, flow, and exhaled CO2 were measured at the airway opening. Combining different I:E ratios, respiratory rates, and tidal volumes, 52 different levels of PEEPi (range 1.8–11.7 cmH2O; mean 8.45 ± 0.32 cmH2O) were studied. The etCO2D is based on the detection of the end-tidal dilution of the capnogram. This is measured at the airway opening by means of a CO2 sensor in which a 2-mm leak is added to the sensing chamber. This allows to detect a capnogram dilution with fresh air when the pressure coming from the ventilator exceeds the PEEPi. This method was compared with the occlusion method.

Results

The etCO2D method detected PEEPi step changes of 0.2 cmH2O. Reference and etCO2D PEEPi presented a good correlation (R2 0.80, P < 0.0001) and good agreement, bias − 0.26, and limits of agreement ± 1.96 SD (2.23, − 2.74) (P < 0.0001).

Conclusions

The etCO2D method is a promising accurate simple way of continuously measure and monitor PEEPi. Its clinical validity needs, however, to be confirmed in clinical studies and in conditions with heterogeneous lung diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kondili E, Alexopoulou C, Prinianakis G, Xirouchaki N, Georgopoulos D. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2004;30(7):1311–8.CrossRef Kondili E, Alexopoulou C, Prinianakis G, Xirouchaki N, Georgopoulos D. Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2004;30(7):1311–8.CrossRef
2.
go back to reference Fleury B, Murciano D, Talamo C, Aubier M, Pariente R, Milic-Emili J. Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis. 1985;131(6):822–7.PubMed Fleury B, Murciano D, Talamo C, Aubier M, Pariente R, Milic-Emili J. Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis. 1985;131(6):822–7.PubMed
3.
go back to reference Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the AutoPEEP effect. Am Rev Respir Dis. 1982;126(1):166–70.PubMed Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the AutoPEEP effect. Am Rev Respir Dis. 1982;126(1):166–70.PubMed
4.
go back to reference Iotti GA, Braschi A. Measurements of respiratory mechanics during mechanical ventilation. Rhazurns: Hamilton Medical Scientific Library; 1999. Iotti GA, Braschi A. Measurements of respiratory mechanics during mechanical ventilation. Rhazurns: Hamilton Medical Scientific Library; 1999.
5.
go back to reference Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78:201–21. Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78:201–21.
6.
go back to reference Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50(1):110–23.PubMed Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50(1):110–23.PubMed
7.
go back to reference Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive Care Med. 2002;28(10):1376–8.CrossRef Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive Care Med. 2002;28(10):1376–8.CrossRef
8.
go back to reference Schumann S, Goebel U, Haberstroh J, Vimlati L, Schneider M, Lichtwarck-Aschoff M, Guttmann J. Determination of respiratory system mechanics during inspiration and expiration by FLow-controlled EXpiration (FLEX): a pilot study in anesthetized pigs. Minerva Anestesiol. 2014;80(1):19–28.PubMed Schumann S, Goebel U, Haberstroh J, Vimlati L, Schneider M, Lichtwarck-Aschoff M, Guttmann J. Determination of respiratory system mechanics during inspiration and expiration by FLow-controlled EXpiration (FLEX): a pilot study in anesthetized pigs. Minerva Anestesiol. 2014;80(1):19–28.PubMed
9.
go back to reference Appendini L. About the relevance of dynamic intrinsic PEEP (PEEPi, dyn) measurement. Intensive Care Med. 1999;25:252–4.CrossRef Appendini L. About the relevance of dynamic intrinsic PEEP (PEEPi, dyn) measurement. Intensive Care Med. 1999;25:252–4.CrossRef
10.
go back to reference Younes M. Dynamic intrinsic PEEP (PEEPi,dyn). Is it worth saving? (editorial). Am J Respir Crit Care Med. 2000;162(5):1608–9.CrossRef Younes M. Dynamic intrinsic PEEP (PEEPi,dyn). Is it worth saving? (editorial). Am J Respir Crit Care Med. 2000;162(5):1608–9.CrossRef
11.
go back to reference Hernandez P, Navalesi P, Maltais F, Gursahaney A, Gottfried SB. Comparison of static and dynamic measurements of intrinsic PEEP in anesthetized cats. J Appl Physiol. 1994;76(6):2437–42.CrossRef Hernandez P, Navalesi P, Maltais F, Gursahaney A, Gottfried SB. Comparison of static and dynamic measurements of intrinsic PEEP in anesthetized cats. J Appl Physiol. 1994;76(6):2437–42.CrossRef
12.
go back to reference Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Roussos C. Accurate measurement of intrinsic positive end-expiratory pressure: how to detect and correct for expiratory muscle activity. Eur Respir J. 1997;10(3):522–9.PubMed Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Roussos C. Accurate measurement of intrinsic positive end-expiratory pressure: how to detect and correct for expiratory muscle activity. Eur Respir J. 1997;10(3):522–9.PubMed
13.
go back to reference Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141:281–9.CrossRef Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141:281–9.CrossRef
14.
go back to reference Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner CF, Rossi A. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.CrossRef Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner CF, Rossi A. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.CrossRef
15.
go back to reference Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Roussos C, Tzelepis GE. Correcting static intrinsic positive end-expiratory pressure for expiratory muscle contraction: validation of a new method. Am J Respir Crit Care Med. 1999;160:785–90.CrossRef Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Roussos C, Tzelepis GE. Correcting static intrinsic positive end-expiratory pressure for expiratory muscle contraction: validation of a new method. Am J Respir Crit Care Med. 1999;160:785–90.CrossRef
16.
go back to reference Maltais F, Reissmann H, Navalesi P, Hernandez P, Gursahaney A, Ranieri VM, Sovilj M, Gottfried SB. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients. Am J Respir Crit Care Med. 1994;150:1318–24.CrossRef Maltais F, Reissmann H, Navalesi P, Hernandez P, Gursahaney A, Ranieri VM, Sovilj M, Gottfried SB. Comparison of static and dynamic measurements of intrinsic PEEP in mechanically ventilated patients. Am J Respir Crit Care Med. 1994;150:1318–24.CrossRef
17.
go back to reference Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.CrossRef Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.CrossRef
18.
go back to reference Bellani G, Coppadoro A, Patroniti N, Turella M, Arrigoni Marocco S, Grasselli G, Mauri T, Pesenti A. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014;121:563–71.CrossRef Bellani G, Coppadoro A, Patroniti N, Turella M, Arrigoni Marocco S, Grasselli G, Mauri T, Pesenti A. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014;121:563–71.CrossRef
Metadata
Title
Continuous monitoring of intrinsic PEEP based on expired CO2 kinetics: an experimental validation study
Authors
Sarah Heili-Frades
Fernando Suarez-Sipmann
Arnoldo Santos
Maria Pilar Carballosa
Alba Naya-Prieto
Carlos Castilla-Reparaz
Maria Jesús Rodriguez-Nieto
Nicolás González-Mangado
German Peces -Barba
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2430-9

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue