Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Research

Renal function after out-of-hospital cardiac arrest; the influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial

Authors: Malin Rundgren, Susann Ullén, Matt P. G. Morgan, Guy Glover, Julius Cranshaw, Nawaf Al-Subaie, Andrew Walden, Michael Joannidis, Marlies Ostermann, Josef Dankiewicz, Niklas Nielsen, Matthew P. Wise

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

To elucidate the incidence of acute kidney injury (AKI) after out-of-hospital cardiac arrest (OHCA) and to examine the impact of target temperature management (TTM) and early coronary angiography on renal function.

Methods

Post hoc analysis of the TTM trial, a multinational randomised controlled trial comparing target temperature of 33 °C versus 36 °C in patients with return of spontaneous circulation after OHCA. The impact of TTM and early angiography (within 6 h of OHCA) versus late or no angiography on the development of AKI during the 7-day period after OHCA was analysed. AKI was defined according to modified KDIGO criteria in patients surviving beyond day 2 after OHCA.

Results

Following exclusions, 853 of 939 patients enrolled in the main trial were analysed. Unadjusted analysis showed that significantly more patients in the 33 °C group had AKI compared to the 36 °C group [211/431 (49%) versus 170/422 (40%) p = 0.01], with a worse severity (p = 0.018). After multivariable adjustment, the difference was not significant (odds ratio 0.75, 95% confidence interval 0.54–1.06, p = 0.10].
Five hundred seventeen patients underwent early coronary angiography. Although the unadjusted analysis showed less AKI and less severe AKI in patients who underwent early angiography compared to patients with late or no angiography, in adjusted analyses, early angiography was not an independent risk factor for AKI (odds ratio 0.73, 95% confidence interval 0.50–1.05, p = 0.09).

Conclusions

In OHCA survivors, TTM at 33 °C compared to management at 36 °C did not show different rates of AKI and early angiography was not associated with an increased risk of AKI.

Trial registration

NCT01020916. Registered on www.ClinicalTrials.gov 26 November 2009 (main trial).
Appendix
Available only for authorised users
Literature
1.
go back to reference Domanovits H, Schillinger M, Müllner M, Thoennissen J, Sterz F, Zeiner A, Druml W. Acute renal failure after successful cardiopulmonary resuscitation. Intensive Care Med. 2001. Domanovits H, Schillinger M, Müllner M, Thoennissen J, Sterz F, Zeiner A, Druml W. Acute renal failure after successful cardiopulmonary resuscitation. Intensive Care Med. 2001.
2.
go back to reference Yanta J, Guyette F, Doshi A, Callaway C, Rittenberger J. Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. 2013;84:1371–4. Yanta J, Guyette F, Doshi A, Callaway C, Rittenberger J. Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. 2013;84:1371–4.
3.
go back to reference Roman-Pognuz E, Elmer J, Rittenberger J, Guyette F, Berlot G, Rosa SD, Peratoner A, Bd A, Lucangelo U, Callaway C. Markers of cardiogenic shock predict persistent acute kidney injury after out of hospital cardiac arrest. Heart Lung. 2019;48(2):126–30.CrossRef Roman-Pognuz E, Elmer J, Rittenberger J, Guyette F, Berlot G, Rosa SD, Peratoner A, Bd A, Lucangelo U, Callaway C. Markers of cardiogenic shock predict persistent acute kidney injury after out of hospital cardiac arrest. Heart Lung. 2019;48(2):126–30.CrossRef
4.
go back to reference Kim Y, Cha K, Cha Y, Kim O, Jung W, Kim T, Han B, Kim H, Lee K, Choi E, et al. Shock duration after resuscitation is associated with occurrence of post-cardiac arrest acute kidney injury. J Korean Med Sci. 2015;30:802–7.CrossRef Kim Y, Cha K, Cha Y, Kim O, Jung W, Kim T, Han B, Kim H, Lee K, Choi E, et al. Shock duration after resuscitation is associated with occurrence of post-cardiac arrest acute kidney injury. J Korean Med Sci. 2015;30:802–7.CrossRef
5.
go back to reference Geri G, Guillemet L, Dumas F, Charpentier J, Antona M, Lemiale V, Bougouin W, Lamhaut L, Mira J, Vinsonneau C, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. 2015;41:1273–80.CrossRef Geri G, Guillemet L, Dumas F, Charpentier J, Antona M, Lemiale V, Bougouin W, Lamhaut L, Mira J, Vinsonneau C, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. 2015;41:1273–80.CrossRef
6.
go back to reference Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef
7.
go back to reference Zeiner A, Sunder-Plassmann G, Sterz F, Holzer M, Losert H, Laggner A, Müllner M. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation. 2004;(3):253–61.CrossRef Zeiner A, Sunder-Plassmann G, Sterz F, Holzer M, Losert H, Laggner A, Müllner M. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation. 2004;(3):253–61.CrossRef
8.
go back to reference DeRosa S, Cal MD, Joannidis M, Villa G, Pacheco J, Virzì G, Samoni S, D'ippoliti F, Marcante S, Visconti F, et al. The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol. 2017;18:376.CrossRef DeRosa S, Cal MD, Joannidis M, Villa G, Pacheco J, Virzì G, Samoni S, D'ippoliti F, Marcante S, Visconti F, et al. The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol. 2017;18:376.CrossRef
9.
go back to reference DeRosa S, Antonelli M, Ronco C. Hypothermia and kidney: a focus on ischemia-reperfusion injury. Nephrol Dial Transplant. 2017;32:241–7. DeRosa S, Antonelli M, Ronco C. Hypothermia and kidney: a focus on ischemia-reperfusion injury. Nephrol Dial Transplant. 2017;32:241–7.
10.
go back to reference Boodhwani M, Rubens F, Wozny D, Nathan H. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting. Ann Thorac Surg. 2009;87:489–95.CrossRef Boodhwani M, Rubens F, Wozny D, Nathan H. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting. Ann Thorac Surg. 2009;87:489–95.CrossRef
11.
go back to reference Windecker S, Kolh P, Alfonso F, Collet J, Cremer J, Falk V, Filippatos G, Hamm C, Head S, Jüni P, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.CrossRef Windecker S, Kolh P, Alfonso F, Collet J, Cremer J, Falk V, Filippatos G, Hamm C, Head S, Jüni P, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.CrossRef
12.
go back to reference Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S465–82.CrossRef Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S465–82.CrossRef
13.
go back to reference Kern K: Early coronary angiography versus delayed coronary angiography (PEARL). ClinicalTrials.gov Identifier: NCT02387398 Available online: https://clinicaltrialsgov/ct2/show/NCT02387398. Kern K: Early coronary angiography versus delayed coronary angiography (PEARL). ClinicalTrials.gov Identifier: NCT02387398 Available online: https://​clinicaltrialsgo​v/​ct2/​show/​NCT02387398.​
15.
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369:2197–206.CrossRef Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369:2197–206.CrossRef
16.
go back to reference Jacobs I, Nadkarni V, Bahr J, Berg R, Billi J, Bossaert L, Cassan P, Coovadia A, D'Este K, Finn J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110:3385–97.CrossRef Jacobs I, Nadkarni V, Bahr J, Berg R, Billi J, Bossaert L, Cassan P, Coovadia A, D'Este K, Finn J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110:3385–97.CrossRef
17.
go back to reference Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, et al. Target temperature management after out-of-hospital cardiac arrest--a randomized, parallel-group, assessor-blinded clinical trial--rationale and design. Am Heart J. 2012;163:541–8.CrossRef Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, et al. Target temperature management after out-of-hospital cardiac arrest--a randomized, parallel-group, assessor-blinded clinical trial--rationale and design. Am Heart J. 2012;163:541–8.CrossRef
18.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.PubMed Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.PubMed
19.
go back to reference Tujjar O, Mineo G, Dell’Anna A, Poyatos-Robles B, Donadello K, Scolletta S, Vincent J-L, Taccone F. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.CrossRef Tujjar O, Mineo G, Dell’Anna A, Poyatos-Robles B, Donadello K, Scolletta S, Vincent J-L, Taccone F. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.CrossRef
20.
go back to reference Hasper D, Sv H, Storm C, Jorres A, Schefold J. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: an observational cohort study. Crit Care. 2009;13(5):R168.CrossRef Hasper D, Sv H, Storm C, Jorres A, Schefold J. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: an observational cohort study. Crit Care. 2009;13(5):R168.CrossRef
21.
go back to reference Chua H, Glassford N, Bellomo R. Acute kidney injury after cardiac arrest. Resuscitation. 2012;6:721–7.CrossRef Chua H, Glassford N, Bellomo R. Acute kidney injury after cardiac arrest. Resuscitation. 2012;6:721–7.CrossRef
22.
go back to reference Bro-Jeppesen J, Hassager C, Wanscher M, Østergaard M, Nielsen N, Erlinge D, Friberg H, Køber L, Kjaergaard J. Targeted temperature management at 33 °C versus 36 °C and impact on systemic vascular resistance and myocardial function after out-of-hospital cardiac arrest: a sub-study of the target temperature management trial. Circ Cardiovasc Interv. 2014;7:663–72.CrossRef Bro-Jeppesen J, Hassager C, Wanscher M, Østergaard M, Nielsen N, Erlinge D, Friberg H, Køber L, Kjaergaard J. Targeted temperature management at 33 °C versus 36 °C and impact on systemic vascular resistance and myocardial function after out-of-hospital cardiac arrest: a sub-study of the target temperature management trial. Circ Cardiovasc Interv. 2014;7:663–72.CrossRef
23.
go back to reference Larsson JS, Bragadottir G, Redfors B, Ricksten S. Renal effects of norepinephrine-induced variations in mean arterial pressure after liver transplantation: a randomized cross-over trial. Acta Anaesthesiol Scand. 2018;62(9):1229–36.CrossRef Larsson JS, Bragadottir G, Redfors B, Ricksten S. Renal effects of norepinephrine-induced variations in mean arterial pressure after liver transplantation: a randomized cross-over trial. Acta Anaesthesiol Scand. 2018;62(9):1229–36.CrossRef
24.
go back to reference Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten S. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37:60–7.CrossRef Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten S. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37:60–7.CrossRef
25.
go back to reference Grand J, Hassager C, Winther-Jensen M, Rundgren M, Friberg H, Horn H, Wise M, Nielsen N, Kuiper M, Wiberg S, et al. Mean arterial pressure during targeted temperature management and renal function after out-of-hospital cardiac arrest. J Crit Care. 2018;50:234–41.CrossRef Grand J, Hassager C, Winther-Jensen M, Rundgren M, Friberg H, Horn H, Wise M, Nielsen N, Kuiper M, Wiberg S, et al. Mean arterial pressure during targeted temperature management and renal function after out-of-hospital cardiac arrest. J Crit Care. 2018;50:234–41.CrossRef
26.
go back to reference Perner A, Prowle J, Joannidis M, Young P, Hjortrup P, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43:807–15.CrossRef Perner A, Prowle J, Joannidis M, Young P, Hjortrup P, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43:807–15.CrossRef
27.
go back to reference Raimundo M, Crichton S, Martin J, Syed Y, Varrier M, Wyncoll D, Ostermann M. Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock. 2015;44:431–7.CrossRef Raimundo M, Crichton S, Martin J, Syed Y, Varrier M, Wyncoll D, Ostermann M. Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock. 2015;44:431–7.CrossRef
28.
go back to reference Petek B, Bravo P, Kim F, Id B, Kudenchuk P, Shuman W, Gunn M, Carlbom D, Gill E, Maynard C, et al. Incidence and risk factors for postcontrast acute kidney injury in survivors of sudden cardiac arrest. Ann Emerg Med. 2016;67:469–76.CrossRef Petek B, Bravo P, Kim F, Id B, Kudenchuk P, Shuman W, Gunn M, Carlbom D, Gill E, Maynard C, et al. Incidence and risk factors for postcontrast acute kidney injury in survivors of sudden cardiac arrest. Ann Emerg Med. 2016;67:469–76.CrossRef
29.
go back to reference Laurent I, Monchi M, Chiche J, Joly L, Spaulding C, Bourgeois B, Cariou A, Rozenberg A, Carli P, Weber S, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–6.CrossRef Laurent I, Monchi M, Chiche J, Joly L, Spaulding C, Bourgeois B, Cariou A, Rozenberg A, Carli P, Weber S, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–6.CrossRef
30.
go back to reference Noc M, Fajadet J, Lassen JF, Kala P, MacCarthy P, Olivecrona GK, Windecker S, Spaulding C, European Association for Percutaneous Cardiovascular I, Stent for Life G. Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European association for percutaneous cardiovascular interventions (EAPCI)/stent for life (SFL) groups. EuroIntervention. 2014;10:31–7.CrossRef Noc M, Fajadet J, Lassen JF, Kala P, MacCarthy P, Olivecrona GK, Windecker S, Spaulding C, European Association for Percutaneous Cardiovascular I, Stent for Life G. Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European association for percutaneous cardiovascular interventions (EAPCI)/stent for life (SFL) groups. EuroIntervention. 2014;10:31–7.CrossRef
31.
go back to reference Joannidis M, Druml W, Forni L, Groeneveld A, Honore P, Hoste E, Ostermann M, Straaten HO-V, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017 : expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43:730–49.CrossRef Joannidis M, Druml W, Forni L, Groeneveld A, Honore P, Hoste E, Ostermann M, Straaten HO-V, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017 : expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43:730–49.CrossRef
32.
go back to reference Ostermann M, McCullough PA, Forni L, Bagshaw SM, Joannidis M, Shi J, Kashani K, Honore P, Chawla L, Investigators JKoboaS. Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Crit Care Med. 2018;46:375–83.CrossRef Ostermann M, McCullough PA, Forni L, Bagshaw SM, Joannidis M, Shi J, Kashani K, Honore P, Chawla L, Investigators JKoboaS. Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Crit Care Med. 2018;46:375–83.CrossRef
33.
go back to reference Lamiere N, Kellum J, Group ftKAGW. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). Crit Care. 2013;2013:205.CrossRef Lamiere N, Kellum J, Group ftKAGW. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). Crit Care. 2013;2013:205.CrossRef
34.
go back to reference Forni L, Darmon M, Ostermann M, Straaten HO-V, Pettilä V, Prowle J, Schetz M, Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43:855–66.CrossRef Forni L, Darmon M, Ostermann M, Straaten HO-V, Pettilä V, Prowle J, Schetz M, Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43:855–66.CrossRef
35.
go back to reference Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef
36.
go back to reference Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz P. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35:1692–702.CrossRef Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz P. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35:1692–702.CrossRef
Metadata
Title
Renal function after out-of-hospital cardiac arrest; the influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial
Authors
Malin Rundgren
Susann Ullén
Matt P. G. Morgan
Guy Glover
Julius Cranshaw
Nawaf Al-Subaie
Andrew Walden
Michael Joannidis
Marlies Ostermann
Josef Dankiewicz
Niklas Nielsen
Matthew P. Wise
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2390-0

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue