Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Diseases of the neuromuscular synapses and muscles | Editorial

Electrophysiological investigations of peripheral nerves and muscles: a method for looking at cell dysfunction in the critically ill patients

Authors: Nicola Latronico, Oliver Friedrich

Published in: Critical Care | Issue 1/2019

Login to get access

Excerpt

Resting trans-membrane potential difference (Em) of skeletal muscle is correlated to the energy status of the organism: the more severe the illness, the lower the Em. In 1971, Cunningham demonstrated this association with severely debilitating medical conditions, showing an increase in intracellular sodium concentration possibly due to a “generalized cellular abnormality” [1]. The study posed the basis for considering local (muscle) bio-electrical events generated by excitable tissues as indicative of the well-being of the entire organism. In 1995, Leijten showed that patients with electrophysiological signs of polyneuropathy had increased intensive care unit (ICU) mortality, more prolonged rehabilitation, and persistent 1-year motor handicap than those without [2]. In 1996, Latronico demonstrated normal nerve histology, despite electrophysiological findings of axonal neuropathy, in biopsies taken in the early stage of acute disease. In late biopsies, however, axonal nerve degeneration was evident [2]. This generated the hypothesis that functional (electrical) impairment may precede structural (histologic) changes and that electrophysiological study (EPS) might be used to look indirectly but non-invasively at cell functioning. During sepsis, a prototypical low-energy hyper-catabolic state, the nerves were trying to maintain their structure and survive by reducing or abolishing the function, a phenomenon easily documented by EPS. If sepsis persisted, the energy supply and/or use might not be restored and the histologic alterations would eventually ensue. According to this theory of the bioenergetic failure, “stunned but still living peripheral nerves and muscles may serve as a sentinel for the development of multiple organ dysfunction syndrome” [3]. In 1999, Hotchkiss described a similar divergence between in vivo clinical evidence of organ failure and post-mortem histologic absence of extensive organ damage sufficient to explain the morbidity and mortality of sepsis [4]. They also hypothesized that in situations of energy failure the cells may revert to a low energy state, a “hibernation” of the cell, to avoid cell death. The theory received support from two multi-center clinical studies, CRIMYNE [5] and CRIMYNE-2 [6], showing that the peroneal nerve, a long lower limb motor nerve, was the most commonly affected nerve. The axons are devoid of the machinery for biosynthetic processes, and all axonal components are synthesized in the cell body. Their anterograde transportation to the nerve terminal requires considerable energy expenditure and may fail if the nerve does not receive adequate nourishment [5]. …
Literature
6.
go back to reference Latronico N, Nattino G, Guarneri B, Fagoni N, Amantini A, Bertolini G. Validation of the peroneal nerve test to diagnose critical illness polyneuropathy and myopathy in the intensive care unit: the multicentre Italian CRIMYNE-2 diagnostic accuracy study. F1000Res. 2014;3:127 Available from: http://f1000research.com/articles/3-127/v3.CrossRef Latronico N, Nattino G, Guarneri B, Fagoni N, Amantini A, Bertolini G. Validation of the peroneal nerve test to diagnose critical illness polyneuropathy and myopathy in the intensive care unit: the multicentre Italian CRIMYNE-2 diagnostic accuracy study. F1000Res. 2014;3:127 Available from: http://​f1000research.​com/​articles/​3-127/​v3.CrossRef
12.
go back to reference Kelmenson DA, Quan D, Nordon-Craft A, Malone D, Schenkman M, Moss M. Electrophysiological abnormalities can differentiate pre-hospital discharge functional status in critically ill patients with normal strength. Intensive Care Med. 2016;42:1504–5.CrossRef Kelmenson DA, Quan D, Nordon-Craft A, Malone D, Schenkman M, Moss M. Electrophysiological abnormalities can differentiate pre-hospital discharge functional status in critically ill patients with normal strength. Intensive Care Med. 2016;42:1504–5.CrossRef
13.
go back to reference Moss M, Yang M, Macht M, Sottile P, Gray L, McNulty M, et al. Screening for critical illness polyneuromyopathy with single nerve conduction studies. Intensive Care Med. 2014;40:683–90.CrossRef Moss M, Yang M, Macht M, Sottile P, Gray L, McNulty M, et al. Screening for critical illness polyneuromyopathy with single nerve conduction studies. Intensive Care Med. 2014;40:683–90.CrossRef
14.
go back to reference Hermans G, Van Mechelen H, Bruyninckx F, Vanhullebusch T, Clerckx B, Meersseman P, et al. Predictive value for weakness and 1-year mortality of screening electrophysiology tests in the ICU. Intensive Care Med. 2015;41:2138–48.CrossRef Hermans G, Van Mechelen H, Bruyninckx F, Vanhullebusch T, Clerckx B, Meersseman P, et al. Predictive value for weakness and 1-year mortality of screening electrophysiology tests in the ICU. Intensive Care Med. 2015;41:2138–48.CrossRef
Metadata
Title
Electrophysiological investigations of peripheral nerves and muscles: a method for looking at cell dysfunction in the critically ill patients
Authors
Nicola Latronico
Oliver Friedrich
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2331-y

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue