Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Derivation and validation of plasma endostatin for predicting renal recovery from acute kidney injury: a prospective validation study

Authors: Hui-Miao Jia, Yue Zheng, Li-Feng Huang, Xin Xin, Wen-Liang Ma, Yi-Jia Jiang, Xi Zheng, Shu-Yan Guo, Wen-Xiong Li

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Acute kidney injury (AKI) is associated with high morbidity and mortality in surgical patients. Nonrecovery from AKI may increase mortality and early risk stratification seems key to improving clinical outcomes. The aim of the current study was to explore and validate the value of endostatin for predicting failure to recover from AKI.

Methods

We conducted a prospective cohort study of 198 patients without known chronic kidney disease who underwent noncardiac major surgery and developed new-onset AKI in the first 48 h after admission to the ICU. The biomarkers of plasma endostatin, neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C were detected immediately after AKI diagnosis. The primary endpoint was nonrecovery from AKI (within 7 days). Cutoff values of the biomarkers for predicting nonrecovery were determined in a derivation cohort (105 AKI patients). Predictive accuracy was then analyzed in a validation cohort (93 AKI patients).

Results

Seventy-six of 198 (38.4%) patients failed to recover from AKI onset, with 41 in the derivation cohort and 35 in the validation cohort. Compared with NGAL and cystatin C, endostatin showed a better prediction for nonrecovery, with an area under the receiver operating characteristic curve (AUC) of 0.776 (95% confidence interval (CI) 0.654–0.892, p < 0.001) and an optimal cutoff value of 63.7 ng/ml. The predictive ability for nonrecovery was greatly improved by the prediction model combining endostatin with clinical risk factors of Sequential Organ Failure Assessment (SOFA) score and AKI classification, with an AUC of 0.887 (95% CI 0.766–0.958, p < 0.001). The value of the endostatin–clinical risk prediction model was superior to the NGAL-clinical risk and cystatin C-clinical risk prediction models in predicting failure to recover from AKI, which was supported by net reclassification improvement and integrated discrimination improvement. Further, the endostatin–clinical risk prediction model achieved sensitivity and specificity of 94.6% (76.8–99.1) and 72.7% (57.2–85.0), respectively, when validated in the validation cohort.

Conclusion

Plasma endostatin shows a useful value for predicting failure to recover from AKI. The predictive ability can be greatly improved when endostatin is combined with the SOFA score and AKI classification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66.CrossRef Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66.CrossRef
2.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.CrossRef Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.CrossRef
3.
go back to reference Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.CrossRef Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.CrossRef
4.
go back to reference Bellomo R, Vaara ST, Kellum JA. How to improve the care of patients with acute kidney injury. Intensive Care Med. 2017;43(6):727–9.CrossRef Bellomo R, Vaara ST, Kellum JA. How to improve the care of patients with acute kidney injury. Intensive Care Med. 2017;43(6):727–9.CrossRef
5.
go back to reference Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7(1):49.CrossRef Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7(1):49.CrossRef
6.
go back to reference Doyle JF, Forni LG. Acute kidney injury: short-term and long-term effects. Crit Care. 2016;20(1):188.CrossRef Doyle JF, Forni LG. Acute kidney injury: short-term and long-term effects. Crit Care. 2016;20(1):188.CrossRef
7.
go back to reference Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20(1):201.CrossRef Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20(1):201.CrossRef
8.
go back to reference Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef
9.
go back to reference Mårtensson J, Jonsson N, Glassford NJ, Bell M, Martling CR, Bellomo R, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann Intensive Care. 2016;6(1):6.CrossRef Mårtensson J, Jonsson N, Glassford NJ, Bell M, Martling CR, Bellomo R, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann Intensive Care. 2016;6(1):6.CrossRef
10.
go back to reference Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017;43(9):1198–209.CrossRef Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017;43(9):1198–209.CrossRef
11.
go back to reference Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettilä V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855–66.CrossRef Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettilä V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855–66.CrossRef
12.
go back to reference Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.CrossRef
13.
go back to reference Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195(6):784–91.CrossRef Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195(6):784–91.CrossRef
14.
go back to reference Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20(1):299.CrossRef Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20(1):299.CrossRef
15.
go back to reference Rosa SD, Samoni S, Ronco C. Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care. Crit Care. 2016;20(1):69.CrossRef Rosa SD, Samoni S, Ronco C. Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care. Crit Care. 2016;20(1):69.CrossRef
16.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.CrossRef Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.CrossRef
17.
go back to reference Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.CrossRef Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.CrossRef
18.
go back to reference Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, et al. Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care. 2015;5(1):50.CrossRef Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, et al. Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care. 2015;5(1):50.CrossRef
19.
go back to reference Gammelager H, Christiansen CF, Johansen MB, Tonnesen E, Jespersen B, Sorensen HT. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care. 2013;17(4):R145.CrossRef Gammelager H, Christiansen CF, Johansen MB, Tonnesen E, Jespersen B, Sorensen HT. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care. 2013;17(4):R145.CrossRef
20.
go back to reference Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol. 2016;27(3):687–97.CrossRef Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol. 2016;27(3):687–97.CrossRef
21.
go back to reference Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.CrossRef Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.CrossRef
22.
go back to reference Christiansen S, Christensen S, Pedersen L, Gammelager H, Layton JB, Brookhart MA, et al. Timing of renal replacement therapy and long-term risk of chronic kidney disease and death in intensive care patients with acute kidney injury. Crit Care. 2017;21(1):326.CrossRef Christiansen S, Christensen S, Pedersen L, Gammelager H, Layton JB, Brookhart MA, et al. Timing of renal replacement therapy and long-term risk of chronic kidney disease and death in intensive care patients with acute kidney injury. Crit Care. 2017;21(1):326.CrossRef
23.
go back to reference Clark WR, Neri M, Garzotto F, Ricci Z, Goldstein SL, Ding XQ, et al. The future of critical care: renal support in 2027. Crit Care. 2017;21(1):92.CrossRef Clark WR, Neri M, Garzotto F, Ricci Z, Goldstein SL, Ding XQ, et al. The future of critical care: renal support in 2027. Crit Care. 2017;21(1):92.CrossRef
24.
go back to reference Goldstein SL, Chawla L, Ronco C, Kellum JA. Renal recovery. Crit Care. 2014;18(1):301. Goldstein SL, Chawla L, Ronco C, Kellum JA. Renal recovery. Crit Care. 2014;18(1):301.
25.
go back to reference Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80(5):545–52.CrossRef Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80(5):545–52.CrossRef
26.
go back to reference Marneros AG, Olsen BR. Physiological role of collagen XVII and endostatin. FASEB J. 2005;19(7):716–28.CrossRef Marneros AG, Olsen BR. Physiological role of collagen XVII and endostatin. FASEB J. 2005;19(7):716–28.CrossRef
27.
go back to reference Lin HC, Chang JH, Jain S, Gabison EE, Kure T, Kato T, et al. Cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Invest Ophthalmol Vis Sci. 2001;42(11):2517–24.PubMed Lin HC, Chang JH, Jain S, Gabison EE, Kure T, Kato T, et al. Cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Invest Ophthalmol Vis Sci. 2001;42(11):2517–24.PubMed
28.
go back to reference Hamano Y, Okude T, Shirai R, Sato I, Kimura R, Ogawa M, et al. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis. J Am Soc Nephrol. 2010;21(9):1445–55.CrossRef Hamano Y, Okude T, Shirai R, Sato I, Kimura R, Ogawa M, et al. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis. J Am Soc Nephrol. 2010;21(9):1445–55.CrossRef
29.
go back to reference Lin CH, Chen J, Ziman B, Marshall S, Maizel J, Goligorsky MS. Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy? Am J Physiol Heart Circ Physiol. 2014;306(12):H1692–9.CrossRef Lin CH, Chen J, Ziman B, Marshall S, Maizel J, Goligorsky MS. Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy? Am J Physiol Heart Circ Physiol. 2014;306(12):H1692–9.CrossRef
30.
go back to reference Jobs E, Riserus U, Ingelsson E, Helmersson J, Nerpin E, Jobs M, et al. Serum cathepsin S is associated with serum C-reactive protein and interleukin-6 independently of obesity in elderly men. J Clin Endocrinol Metab. 2010;95(9):4460–4.CrossRef Jobs E, Riserus U, Ingelsson E, Helmersson J, Nerpin E, Jobs M, et al. Serum cathepsin S is associated with serum C-reactive protein and interleukin-6 independently of obesity in elderly men. J Clin Endocrinol Metab. 2010;95(9):4460–4.CrossRef
31.
go back to reference Maciel TT, Coutinho EL, Soares D, Achar E, Schor N, Bellini MH. Endostatin, an antiangiogenic protein, is expressed in the unilateral ureteral obstruction mice model. J Nephrol. 2008;21(5):753–60.PubMed Maciel TT, Coutinho EL, Soares D, Achar E, Schor N, Bellini MH. Endostatin, an antiangiogenic protein, is expressed in the unilateral ureteral obstruction mice model. J Nephrol. 2008;21(5):753–60.PubMed
32.
go back to reference Bellini MH, Coutinho EL, Filgueiras TC, Maciel TT, Schor N. Endostatin expression in the murine model of ischaemia/reperfusion-induced acute renal failure. Nephrology. 2007;12(5):459–65.CrossRef Bellini MH, Coutinho EL, Filgueiras TC, Maciel TT, Schor N. Endostatin expression in the murine model of ischaemia/reperfusion-induced acute renal failure. Nephrology. 2007;12(5):459–65.CrossRef
33.
go back to reference Bellini MH, Malpighi TF, Calvo FB, Miranda AR, Spencer PJ, Cichy MC, et al. Immobilized kidney 28-kDa endostatin-related (KES28 kDa) fragment promotes endothelial cell survival. Am J Nephrol. 2010;31(3):255–61.CrossRef Bellini MH, Malpighi TF, Calvo FB, Miranda AR, Spencer PJ, Cichy MC, et al. Immobilized kidney 28-kDa endostatin-related (KES28 kDa) fragment promotes endothelial cell survival. Am J Nephrol. 2010;31(3):255–61.CrossRef
34.
go back to reference Ruge T, Carlsson AC, Larsson TE, Carrero JJ, Larsson A, Lind L, et al. Endostatin is associated with kidney injury in the elderly: findings from two community-based cohorts. Am J Nephrol. 2014;40(5):417–24.CrossRef Ruge T, Carlsson AC, Larsson TE, Carrero JJ, Larsson A, Lind L, et al. Endostatin is associated with kidney injury in the elderly: findings from two community-based cohorts. Am J Nephrol. 2014;40(5):417–24.CrossRef
35.
go back to reference Carlsson AC, Carrero JJ, Stenvinkel P, Bottai M, Barany P, Larsson A, et al. Endostatin, Cathepsin S, and Cathepsin L, and their association with inflammatory markers and mortality in patients undergoing hemodialysis. Blood Purif. 2015;39(4):259–65.CrossRef Carlsson AC, Carrero JJ, Stenvinkel P, Bottai M, Barany P, Larsson A, et al. Endostatin, Cathepsin S, and Cathepsin L, and their association with inflammatory markers and mortality in patients undergoing hemodialysis. Blood Purif. 2015;39(4):259–65.CrossRef
Metadata
Title
Derivation and validation of plasma endostatin for predicting renal recovery from acute kidney injury: a prospective validation study
Authors
Hui-Miao Jia
Yue Zheng
Li-Feng Huang
Xin Xin
Wen-Liang Ma
Yi-Jia Jiang
Xi Zheng
Shu-Yan Guo
Wen-Xiong Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2232-5

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue