Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study

Authors: Abele Donati, Elisa Damiani, Roberta Domizi, Claudia Scorcella, Andrea Carsetti, Stefania Tondi, Valentina Monaldi, Erica Adrario, Rocco Romano, Paolo Pelaia, Mervyn Singer

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Impaired microcirculatory perfusion and tissue oxygenation during critical illness are associated with adverse outcome. The aim of this study was to detect alterations in tissue oxygenation or microvascular reactivity and their ability to predict outcome in critically ill patients using thenar near-infrared spectroscopy (NIRS) with a vascular occlusion test (VOT).

Methods

Prospective observational study in critically ill adults admitted to a 12-bed intensive care unit (ICU) of a University Hospital. NIRS with a VOT (using a 40 % tissue oxygen saturation (StO2) target) was applied daily until discharge from the ICU or death. A group of healthy volunteers were evaluated in a single session. During occlusion, StO2 downslope was measured separately for the first (downslope 1) and last part (downslope 2) of the desaturation curve. The difference between downslope 2 and 1 was calculated (delta-downslope). The upslope and area of the hyperaemic phase (receive operating characteristic (ROC) area under the curve (AUC) of StO2) were calculated, reflecting microvascular reactivity. Outcomes were ICU and 90-day mortality.

Results

Patients (n = 89) had altered downslopes and upslopes compared to healthy volunteers (n = 27). Mean delta-downslope was higher in ICU non-survivors (2.8 (0.4, 3.8) %/minute versus 0.4 (−0.8, 1.8) in survivors, p = 0.004) and discriminated 90-day mortality (ROC AUC 0.72 (95 % confidence interval 0.59, 0.84)). ICU non-survivors had lower mean upslope (141 (75, 193) %/minute versus 185 (143, 217) in survivors, p = 0.016) and AUC StO2 (7.9 (4.3, 12.6) versus 14.5 (11.2, 21.3), p = 0.001). Upslope and AUC StO2 on admission were significant although weak predictors of 90-day mortality (ROC AUC = 0.68 (0.54, 0.82) and 0.70 (0.58, 0.82), respectively). AUC StO2 ≤ 6.65 (1st quartile) on admission was independently associated with higher 90-day mortality (hazard ratio 7.964 (95 % CI 2.211, 28.686)). The lowest upslope in the ICU was independently associated with survival after ICU discharge (odds ratio 0.970 (95 % CI 0.945, 0.996)).

Conclusions

In critically ill patients, NIRS with a VOT enables identification of alterations in tissue oxygen extraction capacity and microvascular reactivity that can predict mortality.

Trial registration

NCT02649088, www.​clinicaltrials.​gov, date of registration 23rd December 2015, retrospectively registered.
Appendix
Available only for authorised users
Literature
1.
go back to reference Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.PubMedPubMedCentral Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.PubMedPubMedCentral
2.
go back to reference De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.CrossRefPubMed De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.CrossRefPubMed
3.
go back to reference Dubin A, Pozo MO, Casabella CA, Pàlizas Jr F, Murias G, Museinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.CrossRefPubMedPubMedCentral Dubin A, Pozo MO, Casabella CA, Pàlizas Jr F, Murias G, Museinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.CrossRefPubMedPubMedCentral
4.
go back to reference Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39:612–9.CrossRefPubMed Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39:612–9.CrossRefPubMed
5.
go back to reference Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.CrossRefPubMed Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.CrossRefPubMed
6.
go back to reference Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194.CrossRefPubMedPubMedCentral Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194.CrossRefPubMedPubMedCentral
7.
go back to reference Bazerbashi H, Merriman KW, Toale KM, Chaftari P, Cruz Carreras MT, Henderson JD, et al. Low tissue oxygen saturation at emergency center triage is predictive of intensive care unit admission. J Crit Care. 2014;29:775–9.CrossRefPubMed Bazerbashi H, Merriman KW, Toale KM, Chaftari P, Cruz Carreras MT, Henderson JD, et al. Low tissue oxygen saturation at emergency center triage is predictive of intensive care unit admission. J Crit Care. 2014;29:775–9.CrossRefPubMed
8.
go back to reference Iyegha UP, Conway T, Pokorney K, Mulier KE, Nelson TR, Beilman GJ. Low StO2 measurements in surgical intensive care unit patients is associated with poor outcomes. J Trauma Acute Care Surg. 2014;76:809–16.CrossRefPubMed Iyegha UP, Conway T, Pokorney K, Mulier KE, Nelson TR, Beilman GJ. Low StO2 measurements in surgical intensive care unit patients is associated with poor outcomes. J Trauma Acute Care Surg. 2014;76:809–16.CrossRefPubMed
9.
go back to reference Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15:R223.CrossRefPubMedPubMedCentral Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15:R223.CrossRefPubMedPubMedCentral
10.
go back to reference Neto AS, Pereira VG, Manetta JA, Esposito DC, Schultz MJ. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014;76:226–33.CrossRefPubMed Neto AS, Pereira VG, Manetta JA, Esposito DC, Schultz MJ. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014;76:226–33.CrossRefPubMed
11.
go back to reference Donati A, Romanelli M, Botticelli L, Valentini A, Gabbanelli V, Nataloni S, et al. Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy. Crit Care. 2009;13 Suppl 5:S12.CrossRefPubMedPubMedCentral Donati A, Romanelli M, Botticelli L, Valentini A, Gabbanelli V, Nataloni S, et al. Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy. Crit Care. 2009;13 Suppl 5:S12.CrossRefPubMedPubMedCentral
12.
go back to reference Damiani E, Adrario E, Luchetti MM, Scorcella C, Carsetti A, Mininno N, et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One. 2015;10:e0122655.CrossRefPubMedPubMedCentral Damiani E, Adrario E, Luchetti MM, Scorcella C, Carsetti A, Mininno N, et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One. 2015;10:e0122655.CrossRefPubMedPubMedCentral
13.
go back to reference Gómez H, Mesquida J, Simon P, Kim HK, Puyana JC, Ince C, et al. Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds. Crit Care. 2009;13:S3.CrossRefPubMedPubMedCentral Gómez H, Mesquida J, Simon P, Kim HK, Puyana JC, Ince C, et al. Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds. Crit Care. 2009;13:S3.CrossRefPubMedPubMedCentral
14.
go back to reference Myers D, McGraw M, George M, Mulier K, Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Crit Care. 2009;13:S2.CrossRefPubMedPubMedCentral Myers D, McGraw M, George M, Mulier K, Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Crit Care. 2009;13:S2.CrossRefPubMedPubMedCentral
15.
go back to reference Gómez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 2008;34:1600–7.CrossRefPubMed Gómez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 2008;34:1600–7.CrossRefPubMed
16.
go back to reference Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2001;2003:1250–6. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2001;2003:1250–6.
17.
go back to reference Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62:44–54.CrossRefPubMed Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62:44–54.CrossRefPubMed
18.
go back to reference Duret J, Pottecher J, Bouzat P, Brun J, Harrois A, Payen JF, et al. Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation. Crit Care. 2015;19:141.CrossRefPubMedPubMedCentral Duret J, Pottecher J, Bouzat P, Brun J, Harrois A, Payen JF, et al. Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation. Crit Care. 2015;19:141.CrossRefPubMedPubMedCentral
19.
go back to reference Nicks BA, Campons KM, Bozeman WP. Association of low non-invasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105–10.CrossRefPubMedPubMedCentral Nicks BA, Campons KM, Bozeman WP. Association of low non-invasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105–10.CrossRefPubMedPubMedCentral
20.
go back to reference Carlile C, Wade CE, Baraniuk MS, Holcomb JB, Moore LJ. Evaluation of StO2 tissue perfusion monitoring as a tool to predict the need for lifesaving interventions in trauma patients. Am J Surg. 2015;210:1070–5.CrossRefPubMed Carlile C, Wade CE, Baraniuk MS, Holcomb JB, Moore LJ. Evaluation of StO2 tissue perfusion monitoring as a tool to predict the need for lifesaving interventions in trauma patients. Am J Surg. 2015;210:1070–5.CrossRefPubMed
21.
go back to reference Khasawneh MA, Zielinski MD, Jenkins DH, Zietlow SP, Schiller HJ, Rivera M. Low tissue oxygen saturation is associated with requirements for transfusion in the rural trauma population. World J Surg. 2014;38:1892–7.CrossRefPubMed Khasawneh MA, Zielinski MD, Jenkins DH, Zietlow SP, Schiller HJ, Rivera M. Low tissue oxygen saturation is associated with requirements for transfusion in the rural trauma population. World J Surg. 2014;38:1892–7.CrossRefPubMed
22.
go back to reference Leichtle SW, Kaoutzanis C, Brandt MM, Welch KB, Purtill MA. Tissue oxygen saturation for the risk stratification of septic patients. J Crit Care. 2013;28:1111. e1-5.CrossRefPubMed Leichtle SW, Kaoutzanis C, Brandt MM, Welch KB, Purtill MA. Tissue oxygen saturation for the risk stratification of septic patients. J Crit Care. 2013;28:1111. e1-5.CrossRefPubMed
23.
go back to reference Park JS, Kim SJ, Lee SW, Lee EJ, Han KS, Moon SW, et al. Initial low oxygen extraction ratio is related to severe organ dysfunction and high in-hospital mortality in severe sepsis and septic shock patients. J Emerg Med. 2015;49:261–7.CrossRefPubMed Park JS, Kim SJ, Lee SW, Lee EJ, Han KS, Moon SW, et al. Initial low oxygen extraction ratio is related to severe organ dysfunction and high in-hospital mortality in severe sepsis and septic shock patients. J Emerg Med. 2015;49:261–7.CrossRefPubMed
24.
go back to reference Sair M, Etherington PJ, Winlove CP, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29:1343–9.CrossRefPubMed Sair M, Etherington PJ, Winlove CP, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29:1343–9.CrossRefPubMed
25.
26.
go back to reference Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care. 2015;19:389.CrossRefPubMedPubMedCentral Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care. 2015;19:389.CrossRefPubMedPubMedCentral
27.
go back to reference Pareznik R, Knezevic R, Voga G, Podbregar M. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med. 2006;32:87–92.CrossRefPubMed Pareznik R, Knezevic R, Voga G, Podbregar M. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med. 2006;32:87–92.CrossRefPubMed
28.
go back to reference Nanas S, Gerovasili V, Renieris P, Angelopoulos E, Poriazi M, Kritikos K, et al. Non-invasive assessment of the microcirculation in critically ill patients. Anaesth Intensive Care. 2009;37:733–9.PubMed Nanas S, Gerovasili V, Renieris P, Angelopoulos E, Poriazi M, Kritikos K, et al. Non-invasive assessment of the microcirculation in critically ill patients. Anaesth Intensive Care. 2009;37:733–9.PubMed
29.
go back to reference Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–56.CrossRefPubMed Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–56.CrossRefPubMed
30.
go back to reference Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–9.CrossRefPubMed Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–9.CrossRefPubMed
31.
go back to reference Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F, et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med. 2012;38:592–7.CrossRefPubMed Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F, et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med. 2012;38:592–7.CrossRefPubMed
32.
go back to reference Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27:348–53.CrossRefPubMed Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27:348–53.CrossRefPubMed
Metadata
Title
Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study
Authors
Abele Donati
Elisa Damiani
Roberta Domizi
Claudia Scorcella
Andrea Carsetti
Stefania Tondi
Valentina Monaldi
Erica Adrario
Rocco Romano
Paolo Pelaia
Mervyn Singer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1500-5

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue