Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Real-time point of care microcirculatory assessment of shock: design, rationale and application of the point of care microcirculation (POEM) tool

Authors: David N. Naumann, Clare Mellis, Shamus L. G. Husheer, Philip Hopkins, Jon Bishop, Mark J. Midwinter, Sam D. Hutchings

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Despite over a decade of research and technological advances, sublingual microcirculatory monitoring has not yet reached clinical utility. Offline analysis is time consuming and occurs away from the patient. A system to assess the microcirculation at the point of care is desirable. We present a novel 5-point grading system (the point of care microcirculation (POEM) scoring system) that can be used at the point of care during non-invasive sublingual microcirculatory monitoring.

Methods

The POEM score is an ordinal scale from 1 (worst) to 5 (best), based on a composite assessment of flow and heterogeneity of four individual sublingual video-microscopy clips. Thirty-two healthcare professionals were trained in how to assign POEM scores. Following training they assigned scores to five test sequences (each consisting of four video clips). They were blinded to clinical status. Inter-user consistency and agreement were assessed using intra-class correlation coefficient (ICC) analysis. In addition, blinded expert scores for 68 video clips were compared to offline computer analysis using traditional microcirculatory parameters including total vessel density (TVD), perfused vessel density (PVD), proportion of perfused vessels (PPV), microcirculatory flow index (MFI) and microcirculatory heterogeneity index (MHI). The time taken to assign each was recorded.

Results

Participants showed good inter-rater consistency (ICC 0.83, 95 % CI 0.626, 0.976) and agreement (ICC 0.815, 95 % CI 0.602, 0.974) for assigned POEM scores. Expert scoring of videos correlated with offline values for PVD (R 2  = 0.39; p < 0.05), PPV (R 2  = 0.71; p < 0.001), MFI (R 2  = 0.75; p < 0.001), and MHI (R 2  = 0.68; p < 0.001). POEM scores took less time to assign than conventional offline computer analysis (2 minutes versus 44 minutes).

Conclusion

We present for the first time a novel 5-point ordinal scale of microcirculatory flow and heterogeneity that can be used at the point of care. It has minimal inter-user variability amongst healthcare professionals after just 1 hour of training. POEM scores take a short time to assign, and correspond well to traditional offline computer-analyzed parameters.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3:S8.PubMed Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3:S8.PubMed
2.
go back to reference Dubin A, Pozo MO, Casabella CA, Palizas Jr F, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92.CrossRefPubMedPubMedCentral Dubin A, Pozo MO, Casabella CA, Palizas Jr F, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92.CrossRefPubMedPubMedCentral
3.
go back to reference De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.CrossRefPubMed De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.CrossRefPubMed
4.
go back to reference Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433–41.CrossRefPubMed Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433–41.CrossRefPubMed
5.
go back to reference Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14(4):R151.CrossRefPubMedPubMedCentral Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14(4):R151.CrossRefPubMedPubMedCentral
6.
go back to reference Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34(12):2210–7.CrossRefPubMedPubMedCentral Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34(12):2210–7.CrossRefPubMedPubMedCentral
7.
go back to reference De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):R101.CrossRefPubMedPubMedCentral De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):R101.CrossRefPubMedPubMedCentral
8.
go back to reference Hutchings S, Naumann DN, Harris T, Wendon J, Midwinter MJ. Observational study of the effects of traumatic injury, haemorrhagic shock and resuscitation on the microcirculation: a protocol for the MICROSHOCK study. BMJ Open. 2016;6(3):e010893.CrossRefPubMedPubMedCentral Hutchings S, Naumann DN, Harris T, Wendon J, Midwinter MJ. Observational study of the effects of traumatic injury, haemorrhagic shock and resuscitation on the microcirculation: a protocol for the MICROSHOCK study. BMJ Open. 2016;6(3):e010893.CrossRefPubMedPubMedCentral
9.
go back to reference Hutchings S, Watts S, Kirkman E. The Cytocam video microscope. A new method for visualising the microcirculation using Incident Dark Field technology. Clin Hemorheol Microcirc. 2016;62(3):261–71. Hutchings S, Watts S, Kirkman E. The Cytocam video microscope. A new method for visualising the microcirculation using Incident Dark Field technology. Clin Hemorheol Microcirc. 2016;62(3):261–71.
10.
go back to reference Massey MJ, Larochelle E, Najarro G, Karmacharla A, Arnold R, Trzeciak S, et al. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care. 2013;28(6):913–7.CrossRefPubMed Massey MJ, Larochelle E, Najarro G, Karmacharla A, Arnold R, Trzeciak S, et al. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care. 2013;28(6):913–7.CrossRefPubMed
11.
go back to reference Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9(6):R601–6.CrossRefPubMedPubMedCentral Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9(6):R601–6.CrossRefPubMedPubMedCentral
12.
go back to reference Arnold RC, Parrillo JE, Phillip Dellinger R, Chansky ME, Shapiro NI, Lundy DJ, et al. Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med. 2009;35(10):1761–6.CrossRefPubMed Arnold RC, Parrillo JE, Phillip Dellinger R, Chansky ME, Shapiro NI, Lundy DJ, et al. Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med. 2009;35(10):1761–6.CrossRefPubMed
13.
go back to reference van der Voort PH, van Zanten M, Bosman RJ, van Stijn I, Wester JP, van Raalte R, et al. Testing a conceptual model on early opening of the microcirculation in severe sepsis and septic shock: a randomised controlled pilot study. Eur J Anaesthesiol. 2015;32(3):189–98.CrossRefPubMed van der Voort PH, van Zanten M, Bosman RJ, van Stijn I, Wester JP, van Raalte R, et al. Testing a conceptual model on early opening of the microcirculation in severe sepsis and septic shock: a randomised controlled pilot study. Eur J Anaesthesiol. 2015;32(3):189–98.CrossRefPubMed
14.
go back to reference Lima A, Lopez A, van Genderen ME, Hurtado FJ, Angulo M, Grignola JC, et al. Interrater Reliability and Diagnostic Performance of Subjective Evaluation of Sublingual Microcirculation Images by Physicians and Nurses: A Multicenter Observational Study. Shock. 2015;44(3):239–44.CrossRefPubMed Lima A, Lopez A, van Genderen ME, Hurtado FJ, Angulo M, Grignola JC, et al. Interrater Reliability and Diagnostic Performance of Subjective Evaluation of Sublingual Microcirculation Images by Physicians and Nurses: A Multicenter Observational Study. Shock. 2015;44(3):239–44.CrossRefPubMed
15.
go back to reference Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut E, et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:388.CrossRefPubMedPubMedCentral Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut E, et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:388.CrossRefPubMedPubMedCentral
16.
go back to reference Marini JJ, Gattinoni L, Ince C, Kozek-Langenecker S, Mehta RL, Pichard C, et al. A few of our favorite unconfirmed ideas. Crit Care. 2015;19 Suppl 3:S1.PubMed Marini JJ, Gattinoni L, Ince C, Kozek-Langenecker S, Mehta RL, Pichard C, et al. A few of our favorite unconfirmed ideas. Crit Care. 2015;19 Suppl 3:S1.PubMed
17.
go back to reference Naumann DN, Midwinter MJ, Hutchings S. Venous-to-arterial CO2 differences and the quest for bedside point-of-care monitoring to assess the microcirculation during shock. Ann Translat Med. 2016;4(2):37. Naumann DN, Midwinter MJ, Hutchings S. Venous-to-arterial CO2 differences and the quest for bedside point-of-care monitoring to assess the microcirculation during shock. Ann Translat Med. 2016;4(2):37.
18.
go back to reference Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–95.CrossRefPubMedPubMedCentral Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–95.CrossRefPubMedPubMedCentral
19.
go back to reference Pati S, Potter DR, Baimukanova G, Farrel DH, Holcomb JB, Schreiber MA. Modulating the endotheliopathy of trauma: factor concentrate versus fresh frozen plasma. J Trauma Acute Care Surg. 2016;80(4):576–85.CrossRefPubMed Pati S, Potter DR, Baimukanova G, Farrel DH, Holcomb JB, Schreiber MA. Modulating the endotheliopathy of trauma: factor concentrate versus fresh frozen plasma. J Trauma Acute Care Surg. 2016;80(4):576–85.CrossRefPubMed
Metadata
Title
Real-time point of care microcirculatory assessment of shock: design, rationale and application of the point of care microcirculation (POEM) tool
Authors
David N. Naumann
Clare Mellis
Shamus L. G. Husheer
Philip Hopkins
Jon Bishop
Mark J. Midwinter
Sam D. Hutchings
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1492-1

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue