Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Review

Volume and its relationship to cardiac output and venous return

Author: S. Magder

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Volume infusions are one of the commonest clinical interventions in critically ill patients yet the relationship of volume to cardiac output is not well understood. Blood volume has a stressed and unstressed component but only the stressed component determines flow. It is usually about 30 % of total volume. Stressed volume is relatively constant under steady state conditions. It creates an elastic recoil pressure that is an important factor in the generation of blood flow. The heart creates circulatory flow by lowering the right atrial pressure and allowing the recoil pressure in veins and venules to drain blood back to the heart. The heart then puts the volume back into the systemic circulation so that stroke return equals stroke volume. The heart cannot pump out more volume than comes back. Changes in cardiac output without changes in stressed volume occur because of changes in arterial and venous resistances which redistribute blood volume and change pressure gradients throughout the vasculature. Stressed volume also can be increased by decreasing vascular capacitance, which means recruiting unstressed volume into stressed volume. This is the equivalent of an auto-transfusion. It is worth noting that during exercise in normal young males, cardiac output can increase five-fold with only small changes in stressed blood volume. The mechanical characteristics of the cardiac chambers and the circulation thus ultimately determine the relationship between volume and cardiac output and are the subject of this review.
Literature
2.
go back to reference Guyton AC, Lindsey AW, Bernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609–15.PubMed Guyton AC, Lindsey AW, Bernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609–15.PubMed
3.
go back to reference Caldini P, Permutt S, Waddell JA, Riley RL. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34:606–23.CrossRefPubMed Caldini P, Permutt S, Waddell JA, Riley RL. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34:606–23.CrossRefPubMed
4.
go back to reference Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Boan J, Noordergraaf A, Raines J, editors. Cardiovascular system dynamics. 1. Cambridge, MA and London, England: MIT Press; 1978. p. 465–79. Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Boan J, Noordergraaf A, Raines J, editors. Cardiovascular system dynamics. 1. Cambridge, MA and London, England: MIT Press; 1978. p. 465–79.
5.
go back to reference Krogh A. The regulation of the supply of blood to the right heart. Skand Arch Physiol. 1912;27:227–48.CrossRef Krogh A. The regulation of the supply of blood to the right heart. Skand Arch Physiol. 1912;27:227–48.CrossRef
6.
go back to reference Magder S, Scharf SM. Respiratory-circulatory interactions in health and disease. 2nd ed. New York: Marcel Dekker, Inc; 2001. p. 93–112. Magder S, Scharf SM. Respiratory-circulatory interactions in health and disease. 2nd ed. New York: Marcel Dekker, Inc; 2001. p. 93–112.
8.
go back to reference Permutt S, Wise RA. The control of cardiac output through coupling of heart and blood vessels. In: Yin FCP, editor. Ventricular/vascular coupling. New York: Springer; 1987. p. 159–79.CrossRef Permutt S, Wise RA. The control of cardiac output through coupling of heart and blood vessels. In: Yin FCP, editor. Ventricular/vascular coupling. New York: Springer; 1987. p. 159–79.CrossRef
9.
go back to reference Deschamps A, Magder S. Baroreflex control of regional capacitance and blood flow distribution with or without alpha adrenergic blockade. J Appl Physiol. 1992;263:H1755–63. Deschamps A, Magder S. Baroreflex control of regional capacitance and blood flow distribution with or without alpha adrenergic blockade. J Appl Physiol. 1992;263:H1755–63.
10.
go back to reference Deschamps A, Magder S. Effects of heat stress on vascular capacitance. Am J Physiol. 1994;266:H2122–9.PubMed Deschamps A, Magder S. Effects of heat stress on vascular capacitance. Am J Physiol. 1994;266:H2122–9.PubMed
11.
go back to reference Lindsey AW, Banahan BF, Cannon RH, Guyton AC. Pulmonary blood volume of the dog and its changes in acute heart failure. Am J Physiol. 1957;190(1):45–8.PubMed Lindsey AW, Banahan BF, Cannon RH, Guyton AC. Pulmonary blood volume of the dog and its changes in acute heart failure. Am J Physiol. 1957;190(1):45–8.PubMed
12.
go back to reference Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMed Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMed
13.
go back to reference Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739–47.CrossRefPubMed Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739–47.CrossRefPubMed
14.
go back to reference Brengelmann GL. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.CrossRefPubMed Brengelmann GL. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.CrossRefPubMed
15.
go back to reference Astrand PO, Rodahl K. Physiological bases of exercise. Textbook of work physiology. Montreal: McGraw-Hill; 1977. Astrand PO, Rodahl K. Physiological bases of exercise. Textbook of work physiology. Montreal: McGraw-Hill; 1977.
16.
go back to reference Magder S, De Varennes B, Ralley F. Clinical death and the measurement of stressed vascular volume in humans. Am Rev Respir Dis. 1994;149(4):A1064. Magder S, De Varennes B, Ralley F. Clinical death and the measurement of stressed vascular volume in humans. Am Rev Respir Dis. 1994;149(4):A1064.
17.
go back to reference Drees J, Rothe C. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ Res. 1974;34:360–73.CrossRefPubMed Drees J, Rothe C. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ Res. 1974;34:360–73.CrossRefPubMed
18.
go back to reference Rothe CF, Drees JA. Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ Res. 1976;38(5):347–56.CrossRefPubMed Rothe CF, Drees JA. Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ Res. 1976;38(5):347–56.CrossRefPubMed
19.
go back to reference Rothe CF. Reflex control of veins and vascular capacitance. Physiology Rev. 1983;63(4):1281–95. Rothe CF. Reflex control of veins and vascular capacitance. Physiology Rev. 1983;63(4):1281–95.
20.
go back to reference Robinson VJB, Smiseth OA, Scott-Douglas NW, Smith ER, Tyberg JV, Manyari DE. Assessment of the splanchnic vascular capacity and capacitance using quantitative equilibrium blood-pool scintigraphy. J Nucl Med. 1990;31:154–9.PubMed Robinson VJB, Smiseth OA, Scott-Douglas NW, Smith ER, Tyberg JV, Manyari DE. Assessment of the splanchnic vascular capacity and capacitance using quantitative equilibrium blood-pool scintigraphy. J Nucl Med. 1990;31:154–9.PubMed
21.
go back to reference Samar RE, Coleman TG. Measurement of mean circulatory filling pressure and vascular capacitance in the rat. Am J Physiol. 1978;234(1):H94–100.PubMed Samar RE, Coleman TG. Measurement of mean circulatory filling pressure and vascular capacitance in the rat. Am J Physiol. 1978;234(1):H94–100.PubMed
22.
go back to reference Rothe C. Venous system: physiology of the capacitance vessels. In: Shepherd JT, Abboud FM, editors. Handbook of physiology. The cardiovascular system. Section 2. III. Bethesda: American Physiological Society; 1983. p. 397–452. Rothe C. Venous system: physiology of the capacitance vessels. In: Shepherd JT, Abboud FM, editors. Handbook of physiology. The cardiovascular system. Section 2. III. Bethesda: American Physiological Society; 1983. p. 397–452.
23.
go back to reference Hainsworth R, Karim F, McGregor KH, Rankin AJ. Effects of stimulation of aortic chemoreceptors on abdominal vascular resistance and capacitance in anaesthetized dogs. J Physiol. 1983;334:421–31.CrossRefPubMedPubMedCentral Hainsworth R, Karim F, McGregor KH, Rankin AJ. Effects of stimulation of aortic chemoreceptors on abdominal vascular resistance and capacitance in anaesthetized dogs. J Physiol. 1983;334:421–31.CrossRefPubMedPubMedCentral
25.
go back to reference Appleton C, Olajos M, Morkin E, Goldman S. Alpha-1 adrenergic control of the venous circulation in intact dogs. J Pharmacol Exp Ther. 1985;233:729–34.PubMed Appleton C, Olajos M, Morkin E, Goldman S. Alpha-1 adrenergic control of the venous circulation in intact dogs. J Pharmacol Exp Ther. 1985;233:729–34.PubMed
26.
go back to reference Mitzner W, Goldberg H. Effects of epinephrine on resistive and compliant properties of the canine vasculature. J Appl Physiol. 1975;39(2):272–80.PubMed Mitzner W, Goldberg H. Effects of epinephrine on resistive and compliant properties of the canine vasculature. J Appl Physiol. 1975;39(2):272–80.PubMed
27.
go back to reference Greenway CV, Dettman R, Burczynski F, Sitar S. Effects of circulating catecholamines on hepatic blood volume in anesthetized cats. Am J Physiol. 1986;250:H992–7.PubMed Greenway CV, Dettman R, Burczynski F, Sitar S. Effects of circulating catecholamines on hepatic blood volume in anesthetized cats. Am J Physiol. 1986;250:H992–7.PubMed
28.
go back to reference Brooksby GA, Donald DE. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ Res. 1971;24(3):227.CrossRef Brooksby GA, Donald DE. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ Res. 1971;24(3):227.CrossRef
29.
go back to reference Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–9.PubMed Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–9.PubMed
30.
go back to reference Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18(5):924–32.PubMed Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18(5):924–32.PubMed
31.
go back to reference Guyton AC, Adkins LH. Quantitative aspects of the collapse factor in relation to venous return. Am J Physiol. 1954;177(3):523–7.PubMed Guyton AC, Adkins LH. Quantitative aspects of the collapse factor in relation to venous return. Am J Physiol. 1954;177(3):523–7.PubMed
32.
go back to reference Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992;146(1):4–10.CrossRefPubMed Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992;146(1):4–10.CrossRefPubMed
33.
go back to reference Holt JP, Rhode EA, Kines H. Pericardial and ventricular pressure. Circ Res. 1960;VIII:1171–80.CrossRef Holt JP, Rhode EA, Kines H. Pericardial and ventricular pressure. Circ Res. 1960;VIII:1171–80.CrossRef
34.
go back to reference Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67:209–20.CrossRefPubMed Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67:209–20.CrossRefPubMed
35.
36.
go back to reference Mitzner W, Goldberg H, Lichtenstein S. Effect of thoracic blood volume changes on steady state cardiac output. Circ Res. 1976;38(4):255–61.CrossRefPubMed Mitzner W, Goldberg H, Lichtenstein S. Effect of thoracic blood volume changes on steady state cardiac output. Circ Res. 1976;38(4):255–61.CrossRefPubMed
37.
go back to reference Magder S, Guerard B. Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol. 2012;182(2-3):60–70.CrossRefPubMed Magder S, Guerard B. Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol. 2012;182(2-3):60–70.CrossRefPubMed
38.
go back to reference Magder S, Veerassamy S, Bates JH. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol. 2009;106(1):81–90.CrossRefPubMed Magder S, Veerassamy S, Bates JH. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol. 2009;106(1):81–90.CrossRefPubMed
39.
go back to reference Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thoracalis. 1962;19:239–60. Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thoracalis. 1962;19:239–60.
40.
go back to reference Stene JK, Burns B, Permutt S, Caldini P, Shanoff M. Increased cardiac output following occlusion of the descending thoracic aorta in dogs. Am J Physiol. 1982;243:R152–8.PubMed Stene JK, Burns B, Permutt S, Caldini P, Shanoff M. Increased cardiac output following occlusion of the descending thoracic aorta in dogs. Am J Physiol. 1982;243:R152–8.PubMed
41.
go back to reference Green JF. Mechanism of action of isoproterenol on venous return. Am J Physiol. 1977;232(2):H152–6.PubMed Green JF. Mechanism of action of isoproterenol on venous return. Am J Physiol. 1977;232(2):H152–6.PubMed
43.
go back to reference Notarius CF, Levy RD, Tully A, Fitchett D, Magder S. Cardiac vs. non-cardiac limits to exercise following heart transplantation. Am Heart J. 1998;135:339–48. Notarius CF, Levy RD, Tully A, Fitchett D, Magder S. Cardiac vs. non-cardiac limits to exercise following heart transplantation. Am Heart J. 1998;135:339–48.
44.
go back to reference Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Resp Crit Care Med. 1999;160(6):1987–93.CrossRefPubMed Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Resp Crit Care Med. 1999;160(6):1987–93.CrossRefPubMed
45.
go back to reference Thiele RH, Nemergut EC, Lynch III C. The physiologic implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113(2):284–96.CrossRefPubMed Thiele RH, Nemergut EC, Lynch III C. The physiologic implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113(2):284–96.CrossRefPubMed
47.
go back to reference Thiele RH, Nemergut EC, Lynch III C. The clinical implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113(2):297–304.CrossRefPubMed Thiele RH, Nemergut EC, Lynch III C. The clinical implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113(2):297–304.CrossRefPubMed
Metadata
Title
Volume and its relationship to cardiac output and venous return
Author
S. Magder
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1438-7

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue