Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Letter

VCO2 calorimetry is a convenient method for improved assessment of energy expenditure in the intensive care unit

Authors: Ulrike Pielmeier, Steen Andreassen

Published in: Critical Care | Issue 1/2016

Login to get access

Excerpt

In their interesting article, Stapel et al. [1] suggested the use of carbon dioxide production (VCO2) calorimetry with energy expenditure (EE; kcal/day), calculated as 8.19 × VCO2 (ml/min), where VCO2 is provided by the built-in capnometer of the mechanical ventilator. This calculation on average overestimated EE by 7.7 % compared to indirect calorimetry (IC) with a standard deviation (SD) of ±8.4 %. This is within the ±10 % limits of acceptance used in many studies [2] and, more importantly, is an improvement relative to calculation of EE by predictive equations from the patient’s anthropometric data. The equation used by Stapel et al. incorporated a cohort respiratory quotient (RQ) of 0.86. …
Literature
1.
go back to reference Stapel SN, de Grooth HJS, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.CrossRefPubMedPubMedCentral Stapel SN, de Grooth HJS, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.CrossRefPubMedPubMedCentral
2.
go back to reference Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef
4.
go back to reference Rousing ML, Hahn Pedersen MH, Andreassen S, Pielmeier U, Preiser JC. Energy expenditure in critically ill patients estimated by population based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6(1):16.CrossRefPubMedPubMedCentral Rousing ML, Hahn Pedersen MH, Andreassen S, Pielmeier U, Preiser JC. Energy expenditure in critically ill patients estimated by population based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6(1):16.CrossRefPubMedPubMedCentral
5.
go back to reference McClave SA, Lowen CC, Kleber MJ, McConnell JW, et al. Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parenter Enteral Nutr. 2003;27(1):21–6.CrossRef McClave SA, Lowen CC, Kleber MJ, McConnell JW, et al. Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parenter Enteral Nutr. 2003;27(1):21–6.CrossRef
6.
go back to reference Sundstrom Rehal M, Fiskaare E, Tjader I, et al. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRef Sundstrom Rehal M, Fiskaare E, Tjader I, et al. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRef
Metadata
Title
VCO2 calorimetry is a convenient method for improved assessment of energy expenditure in the intensive care unit
Authors
Ulrike Pielmeier
Steen Andreassen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1397-z

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue