Skip to main content
Top
Published in: Annals of Intensive Care 1/2016

Open Access 01-12-2016 | Research

Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry

Authors: Mark Lillelund Rousing, Mie Hviid Hahn-Pedersen, Steen Andreassen, Ulrike Pielmeier, Jean-Charles Preiser

Published in: Annals of Intensive Care | Issue 1/2016

Login to get access

Abstract

Background

Indirect calorimetry (IC) is the reference method for measurement of energy expenditure (EE) in mechanically ventilated critically ill patients. When IC is unavailable, EE can be calculated by predictive equations or by VCO2-based calorimetry. This study compares the bias, quality and accuracy of these methods.

Methods

EE was determined by IC over a 30-min period in patients from a mixed medical/postsurgical intensive care unit and compared to seven predictive equations and to VCO2-based calorimetry. The bias was described by the mean difference between predicted EE and IC, the quality by the root mean square error (RMSE) of the difference and the accuracy by the number of patients with estimates within 10 % of IC. Errors of VCO2-based calorimetry due to choice of respiratory quotient (RQ) were determined by a sensitivity analysis, and errors due to fluctuations in ventilation were explored by a qualitative analysis.

Results

In 18 patients (mean age 61 ± 17 years, five women), EE averaged 2347 kcal/day. All predictive equations were accurate in less than 50 % of the patients with an RMSE ≥ 15 %. VCO2-based calorimetry was accurate in 89 % of patients, significantly better than all predictive equations, and remained better for any choice of RQ within published range (0.76–0.89). Errors due to fluctuations in ventilation are about equal in IC and VCO2-based calorimetry, and filtering reduced these errors.

Conclusions

This study confirmed the inaccuracy of predictive equations and established VCO2-based calorimetry as a more accurate alternative. Both IC and VCO2-based calorimetry are sensitive to fluctuations in respiration.
Literature
1.
go back to reference Fraipont V, Preiser JC. Energy estimation and measurement in critically ill patients. J Parenter Enteral Nutr. 2013;37(6):705–13.CrossRef Fraipont V, Preiser JC. Energy estimation and measurement in critically ill patients. J Parenter Enteral Nutr. 2013;37(6):705–13.CrossRef
2.
go back to reference Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19(1):35.PubMedCentralCrossRefPubMed Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19(1):35.PubMedCentralCrossRefPubMed
3.
go back to reference Weir JdV. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol (Lond). 1949;109(1–2):1–9.CrossRef Weir JdV. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol (Lond). 1949;109(1–2):1–9.CrossRef
4.
go back to reference Davis KA, Kinn T, Esposito TJ, Reed RL 2nd, Santaniello JM, Luchette FA. Nutritional gain versus financial gain: the role of metabolic carts in the surgical ICU. J Trauma. 2006;61(6):1436–40.CrossRefPubMed Davis KA, Kinn T, Esposito TJ, Reed RL 2nd, Santaniello JM, Luchette FA. Nutritional gain versus financial gain: the role of metabolic carts in the surgical ICU. J Trauma. 2006;61(6):1436–40.CrossRefPubMed
5.
go back to reference Cheng C, Chen C, Wong Y, Lee B, Kan M, Huang Y. Measured versus estimated energy expenditure in mechanically ventilated critically ill patients. Clin Nutr. 2002;21(2):165–72.CrossRefPubMed Cheng C, Chen C, Wong Y, Lee B, Kan M, Huang Y. Measured versus estimated energy expenditure in mechanically ventilated critically ill patients. Clin Nutr. 2002;21(2):165–72.CrossRefPubMed
6.
go back to reference Tatucu-Babet OA, Ridley EJ, Tierney AC. The prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef Tatucu-Babet OA, Ridley EJ, Tierney AC. The prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef
7.
go back to reference Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.CrossRefPubMed Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.CrossRefPubMed
8.
go back to reference Cerra FB, Benitez MR, Blackburn GL, Irwin RS, Jeejeebhoy K, Katz DP, et al. Applied nutrition in ICU patients: a consensus statement of the American College of Chest Physicians. CHEST J. 1997;111(3):769–78.CrossRef Cerra FB, Benitez MR, Blackburn GL, Irwin RS, Jeejeebhoy K, Katz DP, et al. Applied nutrition in ICU patients: a consensus statement of the American College of Chest Physicians. CHEST J. 1997;111(3):769–78.CrossRef
9.
go back to reference Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–23.CrossRefPubMed Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–23.CrossRefPubMed
10.
go back to reference Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr. 2003;27(5):355–73.CrossRef Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr. 2003;27(5):355–73.CrossRef
12.
go back to reference Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7.PubMed Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7.PubMed
13.
go back to reference Frankenfield D. Energy dynamics. In: LE Matarese GM, editor. Contemporary nutrition support practice: a clinical guide Philadelphia. Philadelphia: W.B. Saunders Company; 1998. p. 79–98. Frankenfield D. Energy dynamics. In: LE Matarese GM, editor. Contemporary nutrition support practice: a clinical guide Philadelphia. Philadelphia: W.B. Saunders Company; 1998. p. 79–98.
14.
go back to reference Frankenfield D, Smith JS, Cooney RN. Validation of 2 approaches to predicting resting metabolic rate in critically ill patients. J Parenter Enteral Nutr. 2004;28(4):259–64.CrossRef Frankenfield D, Smith JS, Cooney RN. Validation of 2 approaches to predicting resting metabolic rate in critically ill patients. J Parenter Enteral Nutr. 2004;28(4):259–64.CrossRef
15.
go back to reference Frankenfield D, Roth-Yousey L, Compher C, Evidence Analysis Working Group. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005;105(5):775–89.CrossRefPubMed Frankenfield D, Roth-Yousey L, Compher C, Evidence Analysis Working Group. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005;105(5):775–89.CrossRefPubMed
16.
go back to reference Plank LD, Hill GL. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg. 2000;24:630–8.CrossRefPubMed Plank LD, Hill GL. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg. 2000;24:630–8.CrossRefPubMed
17.
go back to reference Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.PubMedCentralCrossRefPubMed Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.PubMedCentralCrossRefPubMed
18.
go back to reference Dickerson RN, Gervasio JM, Riley ML, Murrell JE, Hickerson WL, Kudsk KA, et al. Accuracy of predictive methods to estimate resting energy expenditure of thermally-injured patients. J Parenter Enteral Nutr. 2002;26(1):17–29.CrossRef Dickerson RN, Gervasio JM, Riley ML, Murrell JE, Hickerson WL, Kudsk KA, et al. Accuracy of predictive methods to estimate resting energy expenditure of thermally-injured patients. J Parenter Enteral Nutr. 2002;26(1):17–29.CrossRef
19.
go back to reference Ortega R, Connor C, Kim S, Djang R, Patel K. Monitoring ventilation with capnography. N Engl J Med. 2012;367(19):e27.CrossRefPubMed Ortega R, Connor C, Kim S, Djang R, Patel K. Monitoring ventilation with capnography. N Engl J Med. 2012;367(19):e27.CrossRefPubMed
20.
go back to reference Rousing ML, Simonsen M, Andreassen S, Pielmeier U, Preiser J. Comparison of resting energy expenditure estimated using predictive equations and measured using indirect calorimetry in critically ill patients. Intensive Care Med. 2014;40(Supplement 1):82. Rousing ML, Simonsen M, Andreassen S, Pielmeier U, Preiser J. Comparison of resting energy expenditure estimated using predictive equations and measured using indirect calorimetry in critically ill patients. Intensive Care Med. 2014;40(Supplement 1):82.
21.
go back to reference Mehta NM, Smallwood CD, Joosten KF, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement—a two-center study. Clin Nutr. 2015;34(1):151–5.PubMedCentralCrossRefPubMed Mehta NM, Smallwood CD, Joosten KF, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement—a two-center study. Clin Nutr. 2015;34(1):151–5.PubMedCentralCrossRefPubMed
22.
go back to reference Stapel SN, de Grooth HS, Alimohamad H, Elbers PWG, Girbes ARJ, Weijs PJM, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.PubMedCentralCrossRefPubMed Stapel SN, de Grooth HS, Alimohamad H, Elbers PWG, Girbes ARJ, Weijs PJM, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.PubMedCentralCrossRefPubMed
23.
go back to reference McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parenter Enteral Nutr. 2003;27(1):21–6.CrossRef McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parenter Enteral Nutr. 2003;27(1):21–6.CrossRef
24.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed
25.
26.
go back to reference GE Healthcare. Datex-Ohmeda S/5-modules technical reference manual. 2005. GE Healthcare. Datex-Ohmeda S/5-modules technical reference manual. 2005.
27.
go back to reference Ivanov S, Nunn J. Influence of duration of hyperventilation on rise time of P CO2, after step reduction of ventilation. Respir Physiol. 1968;5(2):243–9.CrossRefPubMed Ivanov S, Nunn J. Influence of duration of hyperventilation on rise time of P CO2, after step reduction of ventilation. Respir Physiol. 1968;5(2):243–9.CrossRefPubMed
28.
go back to reference Andreassen S, Rees SE. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng. 2005;33(3):265–98.CrossRefPubMed Andreassen S, Rees SE. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng. 2005;33(3):265–98.CrossRefPubMed
29.
go back to reference Chiumello D, Coppola S, Froio S, Mietto C, Brazzi L, Carlesso E, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39(8):1377–85.CrossRefPubMed Chiumello D, Coppola S, Froio S, Mietto C, Brazzi L, Carlesso E, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39(8):1377–85.CrossRefPubMed
30.
go back to reference McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). J Parenter Enteral Nutr. 2009;33(3):277–316.CrossRef McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). J Parenter Enteral Nutr. 2009;33(3):277–316.CrossRef
31.
go back to reference Hamwi G. Therapy: changing dietary concepts. In: Danowski T, editor. Diabetes mellitus: diagnosis and treatment, vol. 1. American Diabetes Association; 1964. p. 73–8. Hamwi G. Therapy: changing dietary concepts. In: Danowski T, editor. Diabetes mellitus: diagnosis and treatment, vol. 1. American Diabetes Association; 1964. p. 73–8.
32.
go back to reference Weissman C, Kemper M. CRTT tJA. Resting metabolic rate of the critically ill patient: measured versus predicted. Anesthesiology. 1986;64(6):673–9.CrossRefPubMed Weissman C, Kemper M. CRTT tJA. Resting metabolic rate of the critically ill patient: measured versus predicted. Anesthesiology. 1986;64(6):673–9.CrossRefPubMed
33.
go back to reference Weissman C, Kemper M, Elwyn D, Askanazi J, Hyman A, Kinney J. The energy expenditure of the mechanically ventilated critically ill patient. An analysis. CHEST J. 1986;89(2):254–9.CrossRef Weissman C, Kemper M, Elwyn D, Askanazi J, Hyman A, Kinney J. The energy expenditure of the mechanically ventilated critically ill patient. An analysis. CHEST J. 1986;89(2):254–9.CrossRef
34.
go back to reference Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003;78(2):241–9.PubMed Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003;78(2):241–9.PubMed
35.
go back to reference Hanique G, Dugernier T, Laterre P, Dougnac A, Roeseler J, Reynaert M. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med. 1994;20(1):12–8.CrossRefPubMed Hanique G, Dugernier T, Laterre P, Dougnac A, Roeseler J, Reynaert M. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med. 1994;20(1):12–8.CrossRefPubMed
36.
go back to reference Bursztein S, Saphar P, Singer P, Elwyn DH. A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr. 1989;50(2):227–30.PubMed Bursztein S, Saphar P, Singer P, Elwyn DH. A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr. 1989;50(2):227–30.PubMed
37.
go back to reference Sundström M, Tjäder I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr. 2013;32(1):118–21.CrossRefPubMed Sundström M, Tjäder I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr. 2013;32(1):118–21.CrossRefPubMed
Metadata
Title
Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry
Authors
Mark Lillelund Rousing
Mie Hviid Hahn-Pedersen
Steen Andreassen
Ulrike Pielmeier
Jean-Charles Preiser
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2016
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-016-0118-8

Other articles of this Issue 1/2016

Annals of Intensive Care 1/2016 Go to the issue