Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Subarachnoid hemorrhage: who dies, and why?

Authors: Hector Lantigua, Santiago Ortega-Gutierrez, J. Michael Schmidt, Kiwon Lee, Neeraj Badjatia, Sachin Agarwal, Jan Claassen, E. Sander Connolly, Stephan A. Mayer

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

Subarachnoid hemorrhage (SAH) is a devastating form of stroke. Causes and mechanisms of in-hospital death after SAH in the modern era of neurocritical care remain incompletely understood.

Methods

We studied 1200 consecutive SAH patients prospectively enrolled in the Columbia University SAH Outcomes Project between July 1996 and January 2009. Analysis was performed to identify predictors of in-hospital mortality.

Results

In-hospital mortality was 18 % (216/1200): 3 % for Hunt-Hess grade 1 or 2, 9 % for grade 3, 24 % for grade 4, and 71 % for grade 5. The most common adjudicated primary causes of death or neurological devastation leading to withdrawal of support were direct effects of the primary hemorrhage (55 %), aneurysm rebleeding (17 %), and medical complications (15 %). Among those who died, brain death was declared in 42 %, 50 % were do-not-resuscitate at the time of cardiac death (86 % of whom had life support actively withdrawn), and 8 % died despite full support. Admission predictors of mortality were age, loss of consciousness at ictus, admission Glasgow Coma Scale score, large aneurysm size, Acute Physiology and Chronic Health Evaluation II (APACHE II) physiologic subscore, and Modified Fisher Scale score. Hospital complications that further increased the risk of dying in multivariable analysis included rebleeding, global cerebral edema, hypernatremia, clinical signs of brain stem herniation, hypotension of less than 90 mm Hg treated with pressors, pulmonary edema, myocardial ischemia, and hepatic failure. Delayed cerebral ischemia, defined as deterioration or infarction from vasospasm, did not predict mortality.

Conclusion

Strategies directed toward minimizing early brain injury and aneurysm rebleeding, along with prevention and treatment of medical complication, hold the best promise for further reducing mortality after SAH.
Appendix
Available only for authorised users
Literature
1.
go back to reference Longstreth Jr WT, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in king county, Washington. Neurology. 1993;43:712–8.CrossRef Longstreth Jr WT, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in king county, Washington. Neurology. 1993;43:712–8.CrossRef
2.
go back to reference Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International stroke incidence collaboration. Stroke. 1997;28:491–9.CrossRef Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International stroke incidence collaboration. Stroke. 1997;28:491–9.CrossRef
3.
go back to reference Rincon F, Rosenwasser RH, Dumont A. The epidemiology of admissions of non-traumatic subarachnoid hemorrhage in the United States. Neurosurg. 2013;73:217–22.CrossRef Rincon F, Rosenwasser RH, Dumont A. The epidemiology of admissions of non-traumatic subarachnoid hemorrhage in the United States. Neurosurg. 2013;73:217–22.CrossRef
4.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.PubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.PubMed
5.
go back to reference Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.CrossRef Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.CrossRef
6.
go back to reference Bonita R, Thomson S. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. Stroke. 1985;16:591–4.CrossRef Bonita R, Thomson S. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. Stroke. 1985;16:591–4.CrossRef
7.
go back to reference Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke. 2004;35:2059–63.CrossRef Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke. 2004;35:2059–63.CrossRef
8.
go back to reference Komotar RJ, Schmidt JM, Starke RM, Claassen J, Wartenberg KE, Lee K, et al. Resuscitation and critical care of poor-grade subarachnoid hemorrhage. Neurosurgery. 2009;64:397–410.CrossRef Komotar RJ, Schmidt JM, Starke RM, Claassen J, Wartenberg KE, Lee K, et al. Resuscitation and critical care of poor-grade subarachnoid hemorrhage. Neurosurgery. 2009;64:397–410.CrossRef
9.
go back to reference Kassell NF, Torner JC, Haley Jr EC, Jane JA, Adams HP, Kongable GL. The international cooperative study on the timing of aneurysm surgery. Part 1: Overall management results. J Neurosurg. 1990;73:18–36.CrossRef Kassell NF, Torner JC, Haley Jr EC, Jane JA, Adams HP, Kongable GL. The international cooperative study on the timing of aneurysm surgery. Part 1: Overall management results. J Neurosurg. 1990;73:18–36.CrossRef
10.
go back to reference Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Critical Care Med. 2006;34:617–23.CrossRef Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Critical Care Med. 2006;34:617–23.CrossRef
11.
go back to reference van der Bilt IA, Hasan D, Vandertop WP, Wilde AA, Algra A, Visser FC, et al. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology. 2009;72:635–42.CrossRef van der Bilt IA, Hasan D, Vandertop WP, Wilde AA, Algra A, Visser FC, et al. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology. 2009;72:635–42.CrossRef
12.
go back to reference Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–32.CrossRef Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–32.CrossRef
13.
go back to reference Helbok R, Ko SB, Schmidt JM, Kurtz P, Fernandez L, Choi HA, et al. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.CrossRef Helbok R, Ko SB, Schmidt JM, Kurtz P, Fernandez L, Choi HA, et al. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.CrossRef
14.
go back to reference Claassen J, Vu A, Kreiter KT, Kowalski RG, Du EY, Ostapkovich N, et al. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Critical Care Med. 2004;32:832–8.CrossRef Claassen J, Vu A, Kreiter KT, Kowalski RG, Du EY, Ostapkovich N, et al. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Critical Care Med. 2004;32:832–8.CrossRef
15.
go back to reference Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: The fisher scale revisited. Stroke. 2001;32:2012–20.CrossRef Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: The fisher scale revisited. Stroke. 2001;32:2012–20.CrossRef
16.
go back to reference Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.CrossRef Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.CrossRef
17.
go back to reference Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.CrossRef Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.CrossRef
18.
go back to reference Hijdra A, Brouwers PJ, Vermeulen M, van Gijn J. Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke. 1990;21:1156–61.CrossRef Hijdra A, Brouwers PJ, Vermeulen M, van Gijn J. Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke. 1990;21:1156–61.CrossRef
19.
go back to reference Brouwers PJ, Dippel DW, Vermeulen M, Lindsay KW, Hasan D, van Gijn J. Amount of blood on computed tomography as an independent predictor after aneurysm rupture. Stroke. 1993;24:809–14.CrossRef Brouwers PJ, Dippel DW, Vermeulen M, Lindsay KW, Hasan D, van Gijn J. Amount of blood on computed tomography as an independent predictor after aneurysm rupture. Stroke. 1993;24:809–14.CrossRef
20.
go back to reference Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, et al. Defining vasospasm after subarachnoid hemorrhage: What is the most clinically relevant definition? Stroke. 2009;40:1963–8.CrossRef Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, et al. Defining vasospasm after subarachnoid hemorrhage: What is the most clinically relevant definition? Stroke. 2009;40:1963–8.CrossRef
21.
go back to reference Matchett SC, Castaldo J, Wasser TE, Baker K, Mathiesen C, Rodgers J. Predicting mortality after intracerebral hemorrhage: comparison of scoring systems and influence of withdrawal of care. J Stroke Cerebrovasc Dis. 2006;15:144–50.CrossRef Matchett SC, Castaldo J, Wasser TE, Baker K, Mathiesen C, Rodgers J. Predicting mortality after intracerebral hemorrhage: comparison of scoring systems and influence of withdrawal of care. J Stroke Cerebrovasc Dis. 2006;15:144–50.CrossRef
22.
go back to reference Lee VH, Ouyang B, John S, Conners JJ, Garg R, Bleck TP, et al. Risk stratification for the in-hospital mortality after subarachnoid hemorrhage: the HAIR score. Neurocrit Care. 2014;21:14–9.CrossRef Lee VH, Ouyang B, John S, Conners JJ, Garg R, Bleck TP, et al. Risk stratification for the in-hospital mortality after subarachnoid hemorrhage: the HAIR score. Neurocrit Care. 2014;21:14–9.CrossRef
23.
go back to reference Kowalski RG, Chang TR, Carhuapoma JR, Tamargo R, Naval NS. Withdrawal of technological life support following subarachnoid hemorrhage. Neurocrit Care. 2013;19:269–75.CrossRef Kowalski RG, Chang TR, Carhuapoma JR, Tamargo R, Naval NS. Withdrawal of technological life support following subarachnoid hemorrhage. Neurocrit Care. 2013;19:269–75.CrossRef
24.
go back to reference Whisnant JP, Sacco SE, O’Fallon WM, Fode NC, Sundt TM. Referral bias in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1993;78:726–32.CrossRef Whisnant JP, Sacco SE, O’Fallon WM, Fode NC, Sundt TM. Referral bias in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1993;78:726–32.CrossRef
25.
go back to reference Solomon RA, Mayer SA, Tarmey J. Relationship between the volume of craniotomies for cerebral aneurysm performed at New York State hospitals and in-hospital mortality. Stroke. 1996;27:13–7.CrossRef Solomon RA, Mayer SA, Tarmey J. Relationship between the volume of craniotomies for cerebral aneurysm performed at New York State hospitals and in-hospital mortality. Stroke. 1996;27:13–7.CrossRef
26.
go back to reference Berman MF, Solomon RA, Mayer SA, Yung P. Impact of demographic and hospital-related factors on outcome following treatment for cerebral aneurysms. Stroke. 2003;34:2200–7.CrossRef Berman MF, Solomon RA, Mayer SA, Yung P. Impact of demographic and hospital-related factors on outcome following treatment for cerebral aneurysms. Stroke. 2003;34:2200–7.CrossRef
27.
go back to reference Broderick J, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent rebleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.CrossRef Broderick J, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent rebleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.CrossRef
28.
go back to reference Hop JW, Rinkel GJE, Algra A, van Gijn J. Initial loss of consciousness and risk of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30:2268–71.CrossRef Hop JW, Rinkel GJE, Algra A, van Gijn J. Initial loss of consciousness and risk of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30:2268–71.CrossRef
29.
go back to reference Naidech AM, Janjua N, Kowalski RG, Kreiter KT, Ostapkovich ND, Fitzsimmons B-F, et al. Predictors and impact of aneurysm rebleeding after subarachnoid hemorrhage. Arch Neurol. 2005;62:410–6.CrossRef Naidech AM, Janjua N, Kowalski RG, Kreiter KT, Ostapkovich ND, Fitzsimmons B-F, et al. Predictors and impact of aneurysm rebleeding after subarachnoid hemorrhage. Arch Neurol. 2005;62:410–6.CrossRef
30.
go back to reference Eskesen V, Rosenorn J, Schmidt K, Ronde F. Pre-existing arterial hypertension in subarachnoid haemorrhage: an unfavourable prognostic factor. Br J Neurosurg. 1987;1:455–61.CrossRef Eskesen V, Rosenorn J, Schmidt K, Ronde F. Pre-existing arterial hypertension in subarachnoid haemorrhage: an unfavourable prognostic factor. Br J Neurosurg. 1987;1:455–61.CrossRef
31.
go back to reference Juvela S, Siironen J, Kuhmonen J. Hyperglycemia, excess weight, and history of hypertension as risk factors for poor outcome and cerebral infarction after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2005;102:998–1003.CrossRef Juvela S, Siironen J, Kuhmonen J. Hyperglycemia, excess weight, and history of hypertension as risk factors for poor outcome and cerebral infarction after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2005;102:998–1003.CrossRef
32.
go back to reference Solenski NJ, Haley Jr EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Crit Care Med. 1995;23:1007–17.CrossRef Solenski NJ, Haley Jr EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Crit Care Med. 1995;23:1007–17.CrossRef
33.
go back to reference Naidech AM, Kreiter KT, Janjua N, Ostapkovich ND, Parra A, Commichau C, et al. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–6.CrossRef Naidech AM, Kreiter KT, Janjua N, Ostapkovich ND, Parra A, Commichau C, et al. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–6.CrossRef
34.
go back to reference Zaroff JG, Rordorf GA, Newell J, Ogilvy CS. Cardiac outcome in patients with subarachnoid hemorrhage and electrocardiographic abnormalities. Neurosurg. 1999;44:34–9.CrossRef Zaroff JG, Rordorf GA, Newell J, Ogilvy CS. Cardiac outcome in patients with subarachnoid hemorrhage and electrocardiographic abnormalities. Neurosurg. 1999;44:34–9.CrossRef
35.
go back to reference Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1531–6.CrossRef Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1531–6.CrossRef
36.
go back to reference Kreiter KT, Copeland DL, Bernardini GL, Bates J, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–9.CrossRef Kreiter KT, Copeland DL, Bernardini GL, Bates J, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–9.CrossRef
37.
go back to reference Etminan N, Vergouwen MD, Macdonald RL. Angiographic vasospasm versus cerebral infarction as outcome measures after aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica. 2013;115:33–40.PubMed Etminan N, Vergouwen MD, Macdonald RL. Angiographic vasospasm versus cerebral infarction as outcome measures after aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica. 2013;115:33–40.PubMed
38.
go back to reference Hillman J, Fridriksson S, Nilsson O, Yu Z, Saveland H, Jakobsson KE. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97:771–8.CrossRef Hillman J, Fridriksson S, Nilsson O, Yu Z, Saveland H, Jakobsson KE. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97:771–8.CrossRef
39.
go back to reference Starke RM, Kim GH, Fernandez A, Komotar RJ, Hickman ZL, Otten ML, et al. Impact of a protocol for acute antifibrinolytic therapy on aneurysm rebleeding after subarachnoid hemorrhage. Stroke. 2008;39:2617–21.CrossRef Starke RM, Kim GH, Fernandez A, Komotar RJ, Hickman ZL, Otten ML, et al. Impact of a protocol for acute antifibrinolytic therapy on aneurysm rebleeding after subarachnoid hemorrhage. Stroke. 2008;39:2617–21.CrossRef
40.
go back to reference Mayer SA, Kossoff SB. Withdrawal of life support in the neurological intensive care unit. Neurology. 1999;52:1602–9.CrossRef Mayer SA, Kossoff SB. Withdrawal of life support in the neurological intensive care unit. Neurology. 1999;52:1602–9.CrossRef
Metadata
Title
Subarachnoid hemorrhage: who dies, and why?
Authors
Hector Lantigua
Santiago Ortega-Gutierrez
J. Michael Schmidt
Kiwon Lee
Neeraj Badjatia
Sachin Agarwal
Jan Claassen
E. Sander Connolly
Stephan A. Mayer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-1036-0

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue