Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Research

Efficiency of hydrogen peroxide in improving disinfection of ICU rooms

Authors: Caroline Blazejewski, Frédéric Wallet, Anahita Rouzé, Rémi Le Guern, Sylvie Ponthieux, Julia Salleron, Saad Nseir

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Introduction

The primary objective of this study was to determine the efficiency of hydrogen peroxide (H2O2) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell®) and an aerosolizer using H2O2, and peracetic acid (aHPP, Anios®) in MDRO environmental disinfection, and assessment of toxicity of these techniques.

Methods

This prospective cross-over study was conducted in five medical and surgical ICUs located in one University hospital, during a 12-week period. Routine terminal cleaning was followed by H2O2 disinfection. A total of 24 environmental bacteriological samplings were collected per room, from eight frequently touched surfaces, at three time-points: after patient discharge (T0), after terminal cleaning (T1) and after H2O2 disinfection (T2).

Results

In total 182 rooms were studied, including 89 (49%) disinfected with aHPP and 93 (51%) with HPV. At T0, 15/182 (8%) rooms were contaminated with at least 1 MDRO (extended spectrum β–lactamase-producing Gram-negative bacilli 50%, imipenem resistant Acinetobacter baumannii 29%, methicillin-resistant Staphylococcus aureus 17%, and Pseudomonas aeruginosa resistant to ceftazidime or imipenem 4%). Routine terminal cleaning reduced environmental bacterial load (P <0.001) without efficiency on MDRO (15/182 (8%) rooms at T0 versus 11/182 (6%) at T1; P = 0.371). H2O2 technologies were efficient for environmental MDRO decontamination (6% of rooms contaminated with MDRO at T1 versus 0.5% at T2, P = 0.004). Patient characteristics were similar in aHPP and HPV groups. No significant difference was found between aHPP and HPV regarding the rate of rooms contaminated with MDRO at T2 (P = 0.313). 42% of room occupants were MDRO carriers. The highest rate of rooms contaminated with MDRO was found in rooms where patients stayed for a longer period of time, and where a patient with MDRO was hospitalized. The residual concentration of H2O2 appears to be higher using aHPP, compared with HPV.

Conclusions

H2O2 treatment is efficient in reducing MDRO contaminated rooms in the ICU. No significant difference was found between aHPP and HPV regarding their disinfection efficiency.
Literature
1.
go back to reference Zahar JR, Garrouste-Orgeas M, Vesin A, Schwebel C, Bonadona A, Philippart F, et al. Impact of contact isolation for multidrug-resistant organisms on the occurrence of medical errors and adverse events. Intensive Care Med. 2013;39:2153–60.CrossRefPubMed Zahar JR, Garrouste-Orgeas M, Vesin A, Schwebel C, Bonadona A, Philippart F, et al. Impact of contact isolation for multidrug-resistant organisms on the occurrence of medical errors and adverse events. Intensive Care Med. 2013;39:2153–60.CrossRefPubMed
2.
go back to reference Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.CrossRefPubMed Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.CrossRefPubMed
3.
go back to reference Tabah A, Koulenti D, Laupland K, Misset B, Valles J, Bruzzi de Carvalho F, et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med. 2012;38:1930–45.CrossRefPubMed Tabah A, Koulenti D, Laupland K, Misset B, Valles J, Bruzzi de Carvalho F, et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med. 2012;38:1930–45.CrossRefPubMed
4.
go back to reference Dancer SJ. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008;8:101–13.CrossRefPubMed Dancer SJ. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008;8:101–13.CrossRefPubMed
5.
go back to reference Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of “no-touch” automated room disinfection systems in infection prevention and control. J Hosp Infect. 2013;83:1–13.CrossRefPubMed Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of “no-touch” automated room disinfection systems in infection prevention and control. J Hosp Infect. 2013;83:1–13.CrossRefPubMed
6.
go back to reference Blazejewski C, Guerry MJ, Preau S, Durocher A, Nseir S. New methods to clean ICU rooms. Infect Disord Drug Targets. 2011;11:365–75.CrossRefPubMed Blazejewski C, Guerry MJ, Preau S, Durocher A, Nseir S. New methods to clean ICU rooms. Infect Disord Drug Targets. 2011;11:365–75.CrossRefPubMed
7.
go back to reference Otter JA, Yezli S, Salkeld JA, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control. 2013;41:S6–11.CrossRefPubMed Otter JA, Yezli S, Salkeld JA, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control. 2013;41:S6–11.CrossRefPubMed
8.
go back to reference Huang SS, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med. 2006;166:1945–51.CrossRefPubMed Huang SS, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med. 2006;166:1945–51.CrossRefPubMed
9.
go back to reference Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect. 2011;17:1201–8.CrossRefPubMed Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect. 2011;17:1201–8.CrossRefPubMed
10.
go back to reference Drees M, Snydman DR, Schmid CH, Barefoot L, Hansjosten K, Vue PM, et al. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2008;46:678–85.CrossRefPubMed Drees M, Snydman DR, Schmid CH, Barefoot L, Hansjosten K, Vue PM, et al. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2008;46:678–85.CrossRefPubMed
11.
go back to reference Shaughnessy MK, Micielli RL, DePestel DD, Arndt J, Strachan CL, Welch KB, et al. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol. 2011;32:201–6.CrossRefPubMed Shaughnessy MK, Micielli RL, DePestel DD, Arndt J, Strachan CL, Welch KB, et al. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol. 2011;32:201–6.CrossRefPubMed
12.
go back to reference Carling PC, Parry MF, Bruno-Murtha LA, Dick B. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010;38:1054–9.CrossRefPubMed Carling PC, Parry MF, Bruno-Murtha LA, Dick B. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010;38:1054–9.CrossRefPubMed
13.
go back to reference Manian FA, Griesenauer S, Senkel D, Setzer JM, Doll SA, Perry AM, et al. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol. 2011;32:667–72.CrossRefPubMed Manian FA, Griesenauer S, Senkel D, Setzer JM, Doll SA, Perry AM, et al. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol. 2011;32:667–72.CrossRefPubMed
14.
go back to reference Barbut F, Yezli S, Mimoun M, Pham J, Chaouat M, Otter JA. Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns. 2013;39:395–403.CrossRefPubMed Barbut F, Yezli S, Mimoun M, Pham J, Chaouat M, Otter JA. Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns. 2013;39:395–403.CrossRefPubMed
15.
go back to reference French GL, Otter JA, Shannon KP, Adams NM, Watling D, Parks MJ. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57:31–7.CrossRefPubMed French GL, Otter JA, Shannon KP, Adams NM, Watling D, Parks MJ. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57:31–7.CrossRefPubMed
16.
go back to reference Passaretti CL, Otter JA, Reich NG, Myers J, Shepard J, Ross T, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56:27–35.CrossRefPubMed Passaretti CL, Otter JA, Reich NG, Myers J, Shepard J, Ross T, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56:27–35.CrossRefPubMed
17.
go back to reference Hardy KJ, Gossain S, Henderson N, Drugan C, Oppenheim BA, Gao F, et al. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66:360–8.CrossRefPubMed Hardy KJ, Gossain S, Henderson N, Drugan C, Oppenheim BA, Gao F, et al. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66:360–8.CrossRefPubMed
18.
go back to reference Otter JA, Yezli S, French GL. Impact of the suspending medium on susceptibility of meticillin-resistant Staphylococcus aureus to hydrogen peroxide vapour decontamination. J Hosp Infect. 2012;82:213–5.CrossRefPubMed Otter JA, Yezli S, French GL. Impact of the suspending medium on susceptibility of meticillin-resistant Staphylococcus aureus to hydrogen peroxide vapour decontamination. J Hosp Infect. 2012;82:213–5.CrossRefPubMed
19.
go back to reference Manian FA, Griesnauer S, Senkel D. Impact of terminal cleaning and disinfection on isolation of Acinetobacter baumannii complex from inanimate surfaces of hospital rooms by quantitative and qualitative methods. Am J Infect Control. 2013;41:384–5.CrossRefPubMed Manian FA, Griesnauer S, Senkel D. Impact of terminal cleaning and disinfection on isolation of Acinetobacter baumannii complex from inanimate surfaces of hospital rooms by quantitative and qualitative methods. Am J Infect Control. 2013;41:384–5.CrossRefPubMed
20.
go back to reference Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu YJ. Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect. 2007;67:182–8.CrossRefPubMed Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu YJ. Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect. 2007;67:182–8.CrossRefPubMed
21.
go back to reference Ray A, Perez F, Beltramini AM, Jakubowycz M, Dimick P, Jacobs MR, et al. Use of vaporized hydrogen peroxide decontamination during an outbreak of multidrug-resistant Acinetobacter baumannii infection at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31:1236–41.CrossRefPubMedCentralPubMed Ray A, Perez F, Beltramini AM, Jakubowycz M, Dimick P, Jacobs MR, et al. Use of vaporized hydrogen peroxide decontamination during an outbreak of multidrug-resistant Acinetobacter baumannii infection at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31:1236–41.CrossRefPubMedCentralPubMed
22.
go back to reference Chmielarczyk A, Higgins PG, Wojkowska-Mach J, Synowiec E, Zander E, Romaniszyn D, et al. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect. 2012;81:239–45.CrossRefPubMed Chmielarczyk A, Higgins PG, Wojkowska-Mach J, Synowiec E, Zander E, Romaniszyn D, et al. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect. 2012;81:239–45.CrossRefPubMed
23.
go back to reference Landelle C, Legrand P, Lesprit P, Cizeau F, Ducellier D, Gouot C, et al. Protracted outbreak of multidrug-resistant Acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol. 2013;34:119–24.CrossRefPubMed Landelle C, Legrand P, Lesprit P, Cizeau F, Ducellier D, Gouot C, et al. Protracted outbreak of multidrug-resistant Acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol. 2013;34:119–24.CrossRefPubMed
25.
go back to reference Orlando P, Cristina ML, Dallera M, Ottria G, Vitale A, Badolati G. Surface disinfection: evaluation of the efficacy of a nebulization system spraying hydrogen peroxide. J Prev Med Hyg. 2008;49:116–9.PubMed Orlando P, Cristina ML, Dallera M, Ottria G, Vitale A, Badolati G. Surface disinfection: evaluation of the efficacy of a nebulization system spraying hydrogen peroxide. J Prev Med Hyg. 2008;49:116–9.PubMed
26.
go back to reference Shapey S, Machin K, Levi K, Boswell TC. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J Hosp Infect. 2008;70:136–41.CrossRefPubMed Shapey S, Machin K, Levi K, Boswell TC. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J Hosp Infect. 2008;70:136–41.CrossRefPubMed
27.
go back to reference Chan HT, White P, Sheorey H, Cocks J, Waters MJ. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital. J Hosp Infect. 2011;79:125–8.CrossRefPubMed Chan HT, White P, Sheorey H, Cocks J, Waters MJ. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital. J Hosp Infect. 2011;79:125–8.CrossRefPubMed
28.
go back to reference Andersen BM, Rasch M, Hochlin K, Jensen FH, Wismar P, Fredriksen JE. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect. 2006;62:149–55.CrossRefPubMed Andersen BM, Rasch M, Hochlin K, Jensen FH, Wismar P, Fredriksen JE. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect. 2006;62:149–55.CrossRefPubMed
29.
go back to reference Bartels MD, Kristoffersen K, Slotsbjerg T, Rohde SM, Lundgren B, Westh H. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide. J Hosp Infect. 2008;70:35–41.CrossRefPubMed Bartels MD, Kristoffersen K, Slotsbjerg T, Rohde SM, Lundgren B, Westh H. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide. J Hosp Infect. 2008;70:35–41.CrossRefPubMed
30.
go back to reference Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30:507–14.CrossRefPubMed Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30:507–14.CrossRefPubMed
31.
go back to reference Piskin N, Celebi G, Kulah C, Mengeloglu Z, Yumusak M. Activity of a dry mist-generated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am J Infect Control. 2011;39:757–62.CrossRefPubMed Piskin N, Celebi G, Kulah C, Mengeloglu Z, Yumusak M. Activity of a dry mist-generated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am J Infect Control. 2011;39:757–62.CrossRefPubMed
32.
go back to reference Holmdahl T, Lanbeck P, Wullt M, Walder MH. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol. 2011;32:831–6.CrossRefPubMed Holmdahl T, Lanbeck P, Wullt M, Walder MH. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol. 2011;32:831–6.CrossRefPubMed
33.
go back to reference Fu TY, Gent P, Kumar V. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 2012;80:199–205.CrossRefPubMed Fu TY, Gent P, Kumar V. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 2012;80:199–205.CrossRefPubMed
34.
go back to reference Boyce JM, Havill NL, Cianci V, Flanagan G. Compatibility of hydrogen peroxide vapor room decontamination with physiological monitors. Infect Control Hosp Epidemiol. 2014;35:92–3.CrossRefPubMed Boyce JM, Havill NL, Cianci V, Flanagan G. Compatibility of hydrogen peroxide vapor room decontamination with physiological monitors. Infect Control Hosp Epidemiol. 2014;35:92–3.CrossRefPubMed
35.
go back to reference Pottage T, Macken S, Walker JT, Bennett AM. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. J Hosp Infect. 2012;80:41–5.CrossRefPubMed Pottage T, Macken S, Walker JT, Bennett AM. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. J Hosp Infect. 2012;80:41–5.CrossRefPubMed
Metadata
Title
Efficiency of hydrogen peroxide in improving disinfection of ICU rooms
Authors
Caroline Blazejewski
Frédéric Wallet
Anahita Rouzé
Rémi Le Guern
Sylvie Ponthieux
Julia Salleron
Saad Nseir
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0752-9

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue