Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2018

Open Access 01-12-2018 | Review

Diagnosis, treatment and prevention of pediatric obesity: consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics

Authors: Giuliana Valerio, Claudio Maffeis, Giuseppe Saggese, Maria Amalia Ambruzzi, Antonio Balsamo, Simonetta Bellone, Marcello Bergamini, Sergio Bernasconi, Gianni Bona, Valeria Calcaterra, Teresa Canali, Margherita Caroli, Francesco Chiarelli, Nicola Corciulo, Antonino Crinò, Procolo Di Bonito, Violetta Di Pietrantonio, Mario Di Pietro, Anna Di Sessa, Antonella Diamanti, Mattia Doria, Danilo Fintini, Roberto Franceschi, Adriana Franzese, Marco Giussani, Graziano Grugni, Dario Iafusco, Lorenzo Iughetti, Adima Lamborghini, Maria Rosaria Licenziati, Raffaele Limauro, Giulio Maltoni, Melania Manco, Leonardo Marchesini Reggiani, Loredana Marcovecchio, Alberto Marsciani, Emanuele Miraglia del Giudice, Anita Morandi, Giuseppe Morino, Beatrice Moro, Valerio Nobili, Laura Perrone, Marina Picca, Angelo Pietrobelli, Francesco Privitera, Salvatore Purromuto, Letizia Ragusa, Roberta Ricotti, Francesca Santamaria, Chiara Sartori, Stefano Stilli, Maria Elisabeth Street, Rita Tanas, Giuliana Trifiró, Giuseppina Rosaria Umano, Andrea Vania, Elvira Verduci, Eugenio Zito

Published in: Italian Journal of Pediatrics | Issue 1/2018

Login to get access

Abstract

The Italian Consensus Position Statement on Diagnosis, Treatment and Prevention of Obesity in Children and Adolescents integrates and updates the previous guidelines to deliver an evidence based approach to the disease. The following areas were reviewed: (1) obesity definition and causes of secondary obesity; (2) physical and psychosocial comorbidities; (3) treatment and care settings; (4) prevention.
The main novelties deriving from the Italian experience lie in the definition, screening of the cardiometabolic and hepatic risk factors and the endorsement of a staged approach to treatment. The evidence based efficacy of behavioral intervention versus pharmacological or surgical treatments is reported. Lastly, the prevention by promoting healthful diet, physical activity, sleep pattern, and environment is strongly recommended since the intrauterine phase.
Appendix
Available only for authorised users
Literature
2.
go back to reference Valerio G, Licenziati MR, Manco M, et al. Health consequences of obesity in children and adolescents. Minerva Pediatr. 2014;66:381–414.PubMed Valerio G, Licenziati MR, Manco M, et al. Health consequences of obesity in children and adolescents. Minerva Pediatr. 2014;66:381–414.PubMed
3.
go back to reference Società Italiana di Pediatria Obesità del bambino e dell’adolescente: Consensus su prevenzione, diagnosi e terapia. Argomenti di Pediatria 1/06. Milano: Istituto Scotti Bassani; 2006. Società Italiana di Pediatria Obesità del bambino e dell’adolescente: Consensus su prevenzione, diagnosi e terapia. Argomenti di Pediatria 1/06. Milano: Istituto Scotti Bassani; 2006.
5.
go back to reference WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–85. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–85.
6.
go back to reference de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull WHO. 2007;85:660–7.PubMed de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull WHO. 2007;85:660–7.PubMed
7.
go back to reference Cacciari E, Milani S, Balsamo A, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Investig. 2006;29:581–93.CrossRef Cacciari E, Milani S, Balsamo A, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Investig. 2006;29:581–93.CrossRef
8.
go back to reference Valerio G, Balsamo A, Baroni MG, et al. Childhood obesity classification systems and cardiometabolic risk factors: a comparison of the Italian, World Health Organization and international obesity task force references. It J Pediatr. 2017;43(Suppl 1):19.CrossRef Valerio G, Balsamo A, Baroni MG, et al. Childhood obesity classification systems and cardiometabolic risk factors: a comparison of the Italian, World Health Organization and international obesity task force references. It J Pediatr. 2017;43(Suppl 1):19.CrossRef
9.
go back to reference Barlow SE, Expert Committee. Recommendations regarding the prevention, assessment and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.PubMedCrossRef Barlow SE, Expert Committee. Recommendations regarding the prevention, assessment and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.PubMedCrossRef
10.
go back to reference de Onis M, Lobstein T. Defining obesity risk status in the general childhood population: which cut-offs should we use? Int J Pediatr Obes. 2010;5:458–60.PubMedCrossRef de Onis M, Lobstein T. Defining obesity risk status in the general childhood population: which cut-offs should we use? Int J Pediatr Obes. 2010;5:458–60.PubMedCrossRef
11.
go back to reference de Onis M, Martínez-Costa C, Núñez F, Nguefack-Tsague G, Montal A, Brines J. Association between WHO cut-offs for childhood overweight and obesity and cardiometabolic risk. Public Health Nutr. 2013;16:625–30.PubMedCrossRef de Onis M, Martínez-Costa C, Núñez F, Nguefack-Tsague G, Montal A, Brines J. Association between WHO cut-offs for childhood overweight and obesity and cardiometabolic risk. Public Health Nutr. 2013;16:625–30.PubMedCrossRef
12.
go back to reference Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, Urbina EM, Ewing LJ, Daniels SR, American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young, Council on Nutrition, Physical Activity and Metabolism, and Council on Clinical Cardiology. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128:1689–712.PubMedCrossRef Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, Urbina EM, Ewing LJ, Daniels SR, American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young, Council on Nutrition, Physical Activity and Metabolism, and Council on Clinical Cardiology. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128:1689–712.PubMedCrossRef
13.
go back to reference Martos-Moreno GÁ, Barrios V, Muñoz-Calvo MT, Pozo J, Chowen JA, Argente J. Principles and pitfalls in the differential diagnosis and management of childhood obesities. Adv Nutr. 2014;5:299S–305S.PubMedPubMedCentralCrossRef Martos-Moreno GÁ, Barrios V, Muñoz-Calvo MT, Pozo J, Chowen JA, Argente J. Principles and pitfalls in the differential diagnosis and management of childhood obesities. Adv Nutr. 2014;5:299S–305S.PubMedPubMedCentralCrossRef
14.
go back to reference Mason K, Page L, Balikcioglu PG. Screening for hormonal, monogenic, and syndromic disorders in obese infants and children. Pediatr Ann. 2014;43:e218–24.PubMedPubMedCentralCrossRef Mason K, Page L, Balikcioglu PG. Screening for hormonal, monogenic, and syndromic disorders in obese infants and children. Pediatr Ann. 2014;43:e218–24.PubMedPubMedCentralCrossRef
15.
go back to reference Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig. 2015;38:1249–63.CrossRef Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig. 2015;38:1249–63.CrossRef
16.
go back to reference Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet–Biedl syndrome, an updates. Clin Genet. 2016;90:3–15.PubMedCrossRef Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet–Biedl syndrome, an updates. Clin Genet. 2016;90:3–15.PubMedCrossRef
18.
go back to reference Douzgou S, Petersen MB. Clinical variability of genetic isolates of Cohen syndrome. Clin Genet. 2011;79:501–6.PubMedCrossRef Douzgou S, Petersen MB. Clinical variability of genetic isolates of Cohen syndrome. Clin Genet. 2011;79:501–6.PubMedCrossRef
19.
go back to reference Mangelsdorf M, Chevrier E, Mustonen A, Picketts DJ. Börjeson-Forssman-Lehmann syndrome due to a novel plant homeodomain zinc finger mutation in the PHF6 gene. J Child Neurol. 2009;24:610–4.PubMedCrossRef Mangelsdorf M, Chevrier E, Mustonen A, Picketts DJ. Börjeson-Forssman-Lehmann syndrome due to a novel plant homeodomain zinc finger mutation in the PHF6 gene. J Child Neurol. 2009;24:610–4.PubMedCrossRef
20.
go back to reference Twigg SR, Lloyd D, Jenkins D, et al. Mutations in multidomain protein MEGF8 identify a carpenter syndrome subtype associated with defective lateralization. Am J Hum Genet. 2012;91:897–905.PubMedPubMedCentralCrossRef Twigg SR, Lloyd D, Jenkins D, et al. Mutations in multidomain protein MEGF8 identify a carpenter syndrome subtype associated with defective lateralization. Am J Hum Genet. 2012;91:897–905.PubMedPubMedCentralCrossRef
21.
go back to reference Basil JS, Santoro SL, Martin LJ, Healy KW, Chini BA, Saal HM. Retrospective study of obesity in children with Down syndrome. J Pediatr. 2016;173:143–8.PubMedCrossRef Basil JS, Santoro SL, Martin LJ, Healy KW, Chini BA, Saal HM. Retrospective study of obesity in children with Down syndrome. J Pediatr. 2016;173:143–8.PubMedCrossRef
22.
go back to reference Bojesen A, Kristensen K, Birkebaek NH, et al. The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care. 2006;29:1591–8.PubMedCrossRef Bojesen A, Kristensen K, Birkebaek NH, et al. The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care. 2006;29:1591–8.PubMedCrossRef
23.
go back to reference Calcaterra V, Brambilla P, Maffè GC, et al. Metabolic syndrome in turner syndrome and relation between body composition and clinical, genetic, and ultrasonographic characteristics. Metab Syndr Relat Disord. 2014;12:159–64.PubMedCrossRef Calcaterra V, Brambilla P, Maffè GC, et al. Metabolic syndrome in turner syndrome and relation between body composition and clinical, genetic, and ultrasonographic characteristics. Metab Syndr Relat Disord. 2014;12:159–64.PubMedCrossRef
24.
go back to reference Albuquerque D, Stice E, Rodríguez-López R, Manco L, Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Gen Genomics. 2015;290:1191–21.CrossRef Albuquerque D, Stice E, Rodríguez-López R, Manco L, Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Gen Genomics. 2015;290:1191–21.CrossRef
25.
go back to reference Huvenne H, Dubern B, Clément K, Poitou C. Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts. 2016;9:158–73.PubMedPubMedCentralCrossRef Huvenne H, Dubern B, Clément K, Poitou C. Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts. 2016;9:158–73.PubMedPubMedCentralCrossRef
26.
go back to reference Genovesi S, Antolini L, Giussani M, et al. Hypertension, prehypertension, and transient elevated blood pressure in children: association with weight excess and waist circumference. Am J Hypertens. 2010;23:756–61.PubMedCrossRef Genovesi S, Antolini L, Giussani M, et al. Hypertension, prehypertension, and transient elevated blood pressure in children: association with weight excess and waist circumference. Am J Hypertens. 2010;23:756–61.PubMedCrossRef
27.
go back to reference Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:e4759.PubMedPubMedCentralCrossRef Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:e4759.PubMedPubMedCentralCrossRef
28.
go back to reference Lo JC, Chandra M, Sinaiko A, et al. Severe obesity in children: prevalence, persistence and relation to hypertension. Int J Pediatr Endocrinol. 2014;2014:3.PubMedPubMedCentralCrossRef Lo JC, Chandra M, Sinaiko A, et al. Severe obesity in children: prevalence, persistence and relation to hypertension. Int J Pediatr Endocrinol. 2014;2014:3.PubMedPubMedCentralCrossRef
29.
go back to reference Rosner B, Cook NR, Daniels S, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988-2008. Hypertension. 2013;62:247–54.PubMedPubMedCentralCrossRef Rosner B, Cook NR, Daniels S, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988-2008. Hypertension. 2013;62:247–54.PubMedPubMedCentralCrossRef
30.
go back to reference Wirix AJ, Nauta J, Groothoff JW, et al. Is the prevalence of hypertension in overweight children overestimated? Arch Dis Child. 2016;101:998–1003.PubMedCrossRef Wirix AJ, Nauta J, Groothoff JW, et al. Is the prevalence of hypertension in overweight children overestimated? Arch Dis Child. 2016;101:998–1003.PubMedCrossRef
31.
go back to reference Strambi M, Giussani M, Ambruzzi MA, et al. Novelty in hypertension in children and adolescents: focus on hypertension during the first year of life, use and interpretation of ambulatory blood pressure monitoring, role of physical activity in prevention and treatment, simple carbohydrates and uric acid as risk factors. Ital J Pediatr. 2016;42:69.PubMedPubMedCentralCrossRef Strambi M, Giussani M, Ambruzzi MA, et al. Novelty in hypertension in children and adolescents: focus on hypertension during the first year of life, use and interpretation of ambulatory blood pressure monitoring, role of physical activity in prevention and treatment, simple carbohydrates and uric acid as risk factors. Ital J Pediatr. 2016;42:69.PubMedPubMedCentralCrossRef
32.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.CrossRef National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.CrossRef
33.
go back to reference Lurbe E, Agabiti-Rosei E, Cruickshank JK, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920.PubMedCrossRef Lurbe E, Agabiti-Rosei E, Cruickshank JK, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920.PubMedCrossRef
34.
go back to reference Spagnolo A, Giussani M, Ambruzzi AM, et al. Focus on prevention, diagnosis and treatment of hypertension in children and adolescents. Ital J Pediatr. 2013;39:20.PubMedPubMedCentralCrossRef Spagnolo A, Giussani M, Ambruzzi AM, et al. Focus on prevention, diagnosis and treatment of hypertension in children and adolescents. Ital J Pediatr. 2013;39:20.PubMedPubMedCentralCrossRef
35.
go back to reference Estrada E, Eneli I, Hampl S, et al. Children’s hospital association consensus statements for comorbidities of childhood obesity. Child Obes. 2014;10:304–17.PubMedPubMedCentralCrossRef Estrada E, Eneli I, Hampl S, et al. Children’s hospital association consensus statements for comorbidities of childhood obesity. Child Obes. 2014;10:304–17.PubMedPubMedCentralCrossRef
36.
go back to reference Di Bonito P, Moio N, Sibilio G, et al. Cardiometabolic phenotype in children with obesity. J Pediatr. 2014;165:1184–9.PubMedCrossRef Di Bonito P, Moio N, Sibilio G, et al. Cardiometabolic phenotype in children with obesity. J Pediatr. 2014;165:1184–9.PubMedCrossRef
37.
go back to reference Pieruzzi F, Antolini L, Salerno FR, et al. The role of blood pressure, body weight and fat distribution on left ventricular mass, diastolic function and cardiac geometry in children. J Hypertens. 2015;33:1182–92.PubMedCrossRef Pieruzzi F, Antolini L, Salerno FR, et al. The role of blood pressure, body weight and fat distribution on left ventricular mass, diastolic function and cardiac geometry in children. J Hypertens. 2015;33:1182–92.PubMedCrossRef
38.
go back to reference American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In standards of medical Care in Diabetes-2016. Diabetes Care. 2016;39(Suppl. 1):S13–22. American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In standards of medical Care in Diabetes-2016. Diabetes Care. 2016;39(Suppl. 1):S13–22.
40.
go back to reference Kester LM, Hey H, Hannon TS. Using hemoglobin A1c for prediabetes and diabetes diagnosis in adolescents: can adult recommendations be upheld for pediatric use? J Adolesc Health. 2012;50:321–3.PubMedCrossRef Kester LM, Hey H, Hannon TS. Using hemoglobin A1c for prediabetes and diabetes diagnosis in adolescents: can adult recommendations be upheld for pediatric use? J Adolesc Health. 2012;50:321–3.PubMedCrossRef
41.
go back to reference Springer SC, Silverstein J, Copeland K, et al. Management of type 2 diabetes mellitus in children and adolescents. Pediatrics. 2013;131:e648–64.PubMedCrossRef Springer SC, Silverstein J, Copeland K, et al. Management of type 2 diabetes mellitus in children and adolescents. Pediatrics. 2013;131:e648–64.PubMedCrossRef
42.
go back to reference Kapadia CR. Are the ADA hemoglobin a(1c) criteria relevant for the diagnosis of type 2 diabetes in youth? Curr Diab Rep. 2013;13:51–5.PubMedCrossRef Kapadia CR. Are the ADA hemoglobin a(1c) criteria relevant for the diagnosis of type 2 diabetes in youth? Curr Diab Rep. 2013;13:51–5.PubMedCrossRef
43.
go back to reference Di Bonito P, Pacifico L, Chiesa C, et al. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity. J Endocrinol Investig. 2017 Apr;40(4):409–16.CrossRef Di Bonito P, Pacifico L, Chiesa C, et al. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity. J Endocrinol Investig. 2017 Apr;40(4):409–16.CrossRef
44.
go back to reference Maffeis C, Pinelli L, Brambilla P, et al. Fasting plasma glucose (FPG) and the risk of impaired glucose tolerance in obese children and adolescents. Obesity (Silver Spring). 2010;18:1437–42.CrossRef Maffeis C, Pinelli L, Brambilla P, et al. Fasting plasma glucose (FPG) and the risk of impaired glucose tolerance in obese children and adolescents. Obesity (Silver Spring). 2010;18:1437–42.CrossRef
45.
go back to reference Bedogni G, Gastaldelli A, Manco M, et al. Relationship between fatty liver and glucose metabolsim: a cross-sectional study in 571 obese children. Nutr Metab Cardiovasc Dis. 2012;22:120–6.PubMedCrossRef Bedogni G, Gastaldelli A, Manco M, et al. Relationship between fatty liver and glucose metabolsim: a cross-sectional study in 571 obese children. Nutr Metab Cardiovasc Dis. 2012;22:120–6.PubMedCrossRef
46.
go back to reference Morandi A, Maschio M, Marigliano M, et al. Screening for impaired glucose tolerance in obese children and adolescents: a validation and implementation study. Pediatr Obes. 2014;9:17–25.PubMedCrossRef Morandi A, Maschio M, Marigliano M, et al. Screening for impaired glucose tolerance in obese children and adolescents: a validation and implementation study. Pediatr Obes. 2014;9:17–25.PubMedCrossRef
47.
go back to reference Manco M, Grugni G, Di Pietro M, et al. Triglycerides-to-HDL cholesterol ratio as screening tool for impaired glucose tolerance in obese children and adolescents. Acta Diabetol. 2016;53:493–8.PubMedCrossRef Manco M, Grugni G, Di Pietro M, et al. Triglycerides-to-HDL cholesterol ratio as screening tool for impaired glucose tolerance in obese children and adolescents. Acta Diabetol. 2016;53:493–8.PubMedCrossRef
48.
go back to reference Korsten-Reck U, Kromeyer-Hauschild K, Korsten K, Baumstark MW, Dickhuth HH, Berg A. Frequency of secondary dyslipidemia in obese children. Vasc Health Risk Manag. 2008;4:1089–94.PubMedPubMedCentralCrossRef Korsten-Reck U, Kromeyer-Hauschild K, Korsten K, Baumstark MW, Dickhuth HH, Berg A. Frequency of secondary dyslipidemia in obese children. Vasc Health Risk Manag. 2008;4:1089–94.PubMedPubMedCentralCrossRef
49.
go back to reference Casavalle PL, Lifshitz F, Romano LS, et al. Prevalence of dyslipidemia and metabolic syndrome risk factor in overweight and obese children. Pediatr Endocrinol Rev. 2014;12:213–23.PubMed Casavalle PL, Lifshitz F, Romano LS, et al. Prevalence of dyslipidemia and metabolic syndrome risk factor in overweight and obese children. Pediatr Endocrinol Rev. 2014;12:213–23.PubMed
50.
go back to reference Morrison JA, Glueck CJ, Woo JG, Wang P. Risk factors for cardiovascular disease and type 2 diabetes retained from childhood to adulthood predict adult outcomes: the Princeton LRC follow-up study. Int J Pediatr Endocrinol. 2012;2012:6.PubMedPubMedCentralCrossRef Morrison JA, Glueck CJ, Woo JG, Wang P. Risk factors for cardiovascular disease and type 2 diabetes retained from childhood to adulthood predict adult outcomes: the Princeton LRC follow-up study. Int J Pediatr Endocrinol. 2012;2012:6.PubMedPubMedCentralCrossRef
51.
go back to reference National Institutes of Health National Heart, Lung, and Blood Institute. Expert panel on integrated pediatric guideline for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128:S1–S446.CrossRef National Institutes of Health National Heart, Lung, and Blood Institute. Expert panel on integrated pediatric guideline for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128:S1–S446.CrossRef
52.
go back to reference Peterson AL, McBride PE. A review of guidelines for dyslipidemia in children and adolescents. WMJ. 2012;111:274–81.PubMed Peterson AL, McBride PE. A review of guidelines for dyslipidemia in children and adolescents. WMJ. 2012;111:274–81.PubMed
53.
go back to reference Campagna F, Martino F, Bifolco M, et al. Detection of familial hypercholesterolemia in a cohort of children with hypercholesterolemia: results of a family and DNA-based screening. Atherosclerosis. 2008;196:356–64.PubMedCrossRef Campagna F, Martino F, Bifolco M, et al. Detection of familial hypercholesterolemia in a cohort of children with hypercholesterolemia: results of a family and DNA-based screening. Atherosclerosis. 2008;196:356–64.PubMedCrossRef
54.
go back to reference Pacifico L, Bonci E, Andreoli G, et al. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr Metab Cardiovasc Dis. 2014;24:737–43.PubMedCrossRef Pacifico L, Bonci E, Andreoli G, et al. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr Metab Cardiovasc Dis. 2014;24:737–43.PubMedCrossRef
55.
go back to reference Di Bonito P, Valerio G, Grugni G, et al. Comparison of non-HDL-cholesterol versus triglycerides-to-HDL-cholesterol ratio in relation to cardiometabolic risk factors and preclinical organ damage in overweight/obese children: the CARITALY study. Nutr Metab Cardiovasc Dis. 2015;25:489–94.PubMedCrossRef Di Bonito P, Valerio G, Grugni G, et al. Comparison of non-HDL-cholesterol versus triglycerides-to-HDL-cholesterol ratio in relation to cardiometabolic risk factors and preclinical organ damage in overweight/obese children: the CARITALY study. Nutr Metab Cardiovasc Dis. 2015;25:489–94.PubMedCrossRef
56.
go back to reference Di Bonito P, Moio N, Scilla C, et al. Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children. Diabetes Care. 2012;35:158–62.PubMedCrossRef Di Bonito P, Moio N, Scilla C, et al. Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children. Diabetes Care. 2012;35:158–62.PubMedCrossRef
57.
go back to reference Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118:1388–93.PubMedCrossRef Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118:1388–93.PubMedCrossRef
58.
go back to reference Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut. 2009;58:1538–44.PubMedPubMedCentralCrossRef Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut. 2009;58:1538–44.PubMedPubMedCentralCrossRef
59.
go back to reference Schwimmer JB, Dunn W, Norman GJ, et al. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology. 2010;138:1357–64. 1364.e1-2PubMedPubMedCentralCrossRef Schwimmer JB, Dunn W, Norman GJ, et al. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology. 2010;138:1357–64. 1364.e1-2PubMedPubMedCentralCrossRef
60.
go back to reference Koot BG, van der Baan-Slootweg OH, Tamminga-Smeulders CL, et al. Lifestyle intervention for non alcoholic fatty liver disease: prospective cohort study of its efficacy and factors related to improvement. Arch Dis Child. 2011;96:669–74.PubMedCrossRef Koot BG, van der Baan-Slootweg OH, Tamminga-Smeulders CL, et al. Lifestyle intervention for non alcoholic fatty liver disease: prospective cohort study of its efficacy and factors related to improvement. Arch Dis Child. 2011;96:669–74.PubMedCrossRef
61.
go back to reference Vajro P, Lenta S, Socha P, et al. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: position paper of the ESPGHAN hepatology committee. J Pediatr Gastroenterol Nutr. 2012;54:700–13.PubMedCrossRef Vajro P, Lenta S, Socha P, et al. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: position paper of the ESPGHAN hepatology committee. J Pediatr Gastroenterol Nutr. 2012;54:700–13.PubMedCrossRef
62.
go back to reference Nobili V, Alkhouri N, Alisi A, et al. Retinol-binding protein 4: a promising circulating marker of liver damage in pediatric nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:575–9.PubMedCrossRef Nobili V, Alkhouri N, Alisi A, et al. Retinol-binding protein 4: a promising circulating marker of liver damage in pediatric nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:575–9.PubMedCrossRef
63.
go back to reference Lebensztejn DM, Wierzbicka A, Socha P, et al. Cytokeratin-18 and hyaluronic acid levels predict liver fibrosis in children with non-alcoholic fatty liver disease. Acta Biochim Pol. 2011;58:563–6.PubMed Lebensztejn DM, Wierzbicka A, Socha P, et al. Cytokeratin-18 and hyaluronic acid levels predict liver fibrosis in children with non-alcoholic fatty liver disease. Acta Biochim Pol. 2011;58:563–6.PubMed
64.
go back to reference Alkhouri N, Mansoor S, Giammaria P, Liccardo D, Lopez R, Nobili V. The development of the pediatric NAFLD fibrosis score (PNFS) to predict the presence of advanced fibrosis in children with nonalcoholic fatty liver disease. PLoS One. 2014;9:e104558.PubMedPubMedCentralCrossRef Alkhouri N, Mansoor S, Giammaria P, Liccardo D, Lopez R, Nobili V. The development of the pediatric NAFLD fibrosis score (PNFS) to predict the presence of advanced fibrosis in children with nonalcoholic fatty liver disease. PLoS One. 2014;9:e104558.PubMedPubMedCentralCrossRef
65.
go back to reference Marzuillo P, Grandone A, Perrone L, Miraglia Del Giudice E. Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World J Gastroenterol. 2015;21:6444–50.PubMedPubMedCentralCrossRef Marzuillo P, Grandone A, Perrone L, Miraglia Del Giudice E. Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World J Gastroenterol. 2015;21:6444–50.PubMedPubMedCentralCrossRef
66.
go back to reference Goyal NP, Schwimmer JB. The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:325–38.PubMedCrossRef Goyal NP, Schwimmer JB. The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:325–38.PubMedCrossRef
67.
go back to reference Maffeis C, Banzato C, Rigotti F, et al. Biochemical parameters and anthropometry predict NAFLD in obese children. J Pediatr Gastroenterol Nutr. 2011;53:590–3.PubMed Maffeis C, Banzato C, Rigotti F, et al. Biochemical parameters and anthropometry predict NAFLD in obese children. J Pediatr Gastroenterol Nutr. 2011;53:590–3.PubMed
68.
go back to reference Kaechele V, Wabitsch M, Thiere D, et al. Prevalence of gallbladder stone disease in obese children and adolescents: influence of the degree of obesity, sex, and pubertal development. J Pediatr Gastroenterol Nutr. 2006;42:66–70.PubMedCrossRef Kaechele V, Wabitsch M, Thiere D, et al. Prevalence of gallbladder stone disease in obese children and adolescents: influence of the degree of obesity, sex, and pubertal development. J Pediatr Gastroenterol Nutr. 2006;42:66–70.PubMedCrossRef
69.
go back to reference Mehta S, Lopez ME, Chumpitazi BP, Mazziotti MV, Brandt ML, Fishman DS. Clinical characteristics and risk factors for symptomatic pediatric gallbladder disease. Pediatrics. 2012;129:e82–8.PubMedCrossRef Mehta S, Lopez ME, Chumpitazi BP, Mazziotti MV, Brandt ML, Fishman DS. Clinical characteristics and risk factors for symptomatic pediatric gallbladder disease. Pediatrics. 2012;129:e82–8.PubMedCrossRef
70.
go back to reference Heida A, Koot BG, vd Baan-Slootweg OH, et al. Gallstone disease in severely obese children participating in a lifestyle intervention program: incidence and risk factors. Int J Obes. 2014;38:950–3.CrossRef Heida A, Koot BG, vd Baan-Slootweg OH, et al. Gallstone disease in severely obese children participating in a lifestyle intervention program: incidence and risk factors. Int J Obes. 2014;38:950–3.CrossRef
71.
73.
go back to reference Fradin K, Racine AD, Belamarich PF. Obesity and synmptomatic cholelithiasis in childhood: epidemiologic and case-control evidence for a strong relationship. J Pediatr Gastroenterol Nutr. 2014;58:102–6.PubMedCrossRef Fradin K, Racine AD, Belamarich PF. Obesity and synmptomatic cholelithiasis in childhood: epidemiologic and case-control evidence for a strong relationship. J Pediatr Gastroenterol Nutr. 2014;58:102–6.PubMedCrossRef
74.
go back to reference Størdal K, Johannesdottir GB, Bentsen BS, Carlsen KC, Sandvik L. Asthma and overweight are associated with symptoms of gastro-oesophageal reflux. Acta Paediatr. 2006;95:1197–201.PubMedCrossRef Størdal K, Johannesdottir GB, Bentsen BS, Carlsen KC, Sandvik L. Asthma and overweight are associated with symptoms of gastro-oesophageal reflux. Acta Paediatr. 2006;95:1197–201.PubMedCrossRef
75.
go back to reference Malaty HM, Fraley JK, Abudayyeh S, et al. Obesity and gastroesophageal reflux disease and gastroesophageal reflux symptoms in children. Clin Exp Gastroenterol. 2009;2:31–6.PubMedPubMedCentralCrossRef Malaty HM, Fraley JK, Abudayyeh S, et al. Obesity and gastroesophageal reflux disease and gastroesophageal reflux symptoms in children. Clin Exp Gastroenterol. 2009;2:31–6.PubMedPubMedCentralCrossRef
76.
go back to reference Pashankar DS, Corbin Z, Shah SK, Caprio S. Increased prevalence of gastroesophageal reflux symptoms in obese children evaluated in an academic medical center. J Clin Gastroenterol. 2009;43:410–3.PubMedCrossRef Pashankar DS, Corbin Z, Shah SK, Caprio S. Increased prevalence of gastroesophageal reflux symptoms in obese children evaluated in an academic medical center. J Clin Gastroenterol. 2009;43:410–3.PubMedCrossRef
77.
go back to reference Teitelbaum JE, Sinha P, Micale M, Yeung S, Jaeger J. Obesity is related to multiple functional abdominal diseases. J Pediatr. 2009;154:444–6.PubMedCrossRef Teitelbaum JE, Sinha P, Micale M, Yeung S, Jaeger J. Obesity is related to multiple functional abdominal diseases. J Pediatr. 2009;154:444–6.PubMedCrossRef
78.
go back to reference Koebnick C, Getahun D, Smith N, Porter AH, Der-Sarkissian JK, Jacobsen SJ. Extreme childhood obesity is associated with increased risk for gastroesophageal reflux disease in a large population-based study. Int J Pediatr Obes. 2011;6:e257–63.PubMedCrossRef Koebnick C, Getahun D, Smith N, Porter AH, Der-Sarkissian JK, Jacobsen SJ. Extreme childhood obesity is associated with increased risk for gastroesophageal reflux disease in a large population-based study. Int J Pediatr Obes. 2011;6:e257–63.PubMedCrossRef
79.
80.
go back to reference Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.CrossRef Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.CrossRef
81.
go back to reference Azziz R, Carmina E, Dewailly D, et al. Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.PubMedCrossRef Azziz R, Carmina E, Dewailly D, et al. Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.PubMedCrossRef
82.
go back to reference Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS). Hum Reprod. 2012;27:14–24.CrossRef Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS). Hum Reprod. 2012;27:14–24.CrossRef
83.
go back to reference Carmina E, Oberfield SE, Lobo RA. The diagnosis of polycystic ovary syndrome in adolescents. Am J Obstet Gynecol. 2010;203:201–5.PubMedCrossRef Carmina E, Oberfield SE, Lobo RA. The diagnosis of polycystic ovary syndrome in adolescents. Am J Obstet Gynecol. 2010;203:201–5.PubMedCrossRef
84.
go back to reference Conway G, Dewailly D, Diamanti-Kandarakis E, et al. European survey of diagnosis and management of the polycystic ovary syndrome: results of the ESE PCOS special interest Group's questionnaire.; ESE PCOS special interest group. Eur J Endocrinol. 2014;171:489–98.PubMedCrossRef Conway G, Dewailly D, Diamanti-Kandarakis E, et al. European survey of diagnosis and management of the polycystic ovary syndrome: results of the ESE PCOS special interest Group's questionnaire.; ESE PCOS special interest group. Eur J Endocrinol. 2014;171:489–98.PubMedCrossRef
85.
go back to reference Santamaria F, Montella S, Pietrobelli A. Obesity and pulmonary disease: unanswered questions. Obes Rev. 2012;13:822–33.PubMedCrossRef Santamaria F, Montella S, Pietrobelli A. Obesity and pulmonary disease: unanswered questions. Obes Rev. 2012;13:822–33.PubMedCrossRef
86.
go back to reference Delgado J, Barranco P, Quirce S. Obesity and asthma. J Investig Allergol Clin Immunol. 2008;18:420–5.PubMed Delgado J, Barranco P, Quirce S. Obesity and asthma. J Investig Allergol Clin Immunol. 2008;18:420–5.PubMed
87.
go back to reference Verhulst SL, Aerts L, Jacobs S, et al. Sleep-disordered breathing, obesity, and airway inflammation in children and adolescents. Chest. 2008;34:1169–75.CrossRef Verhulst SL, Aerts L, Jacobs S, et al. Sleep-disordered breathing, obesity, and airway inflammation in children and adolescents. Chest. 2008;34:1169–75.CrossRef
88.
go back to reference Kang KT, Weng WC, Lee PL, Hsu WC. Central sleep apnea in obese children with sleep-disordered breathing. Int J Obes. 2014;38:27–31.CrossRef Kang KT, Weng WC, Lee PL, Hsu WC. Central sleep apnea in obese children with sleep-disordered breathing. Int J Obes. 2014;38:27–31.CrossRef
89.
go back to reference Boxer GH, Bauer AM, Miller BD. Obesity-hypoventilation in childhood. Am J Acad Child Adolesc Psychiatry. 1988;27:552–8.CrossRef Boxer GH, Bauer AM, Miller BD. Obesity-hypoventilation in childhood. Am J Acad Child Adolesc Psychiatry. 1988;27:552–8.CrossRef
90.
go back to reference Rosen CL. Clinical features of obstructive sleep apnea hypoventilation syndrome in otherwise healthy children. Pediatr Pulmonol. 1999;27:403–9.PubMedCrossRef Rosen CL. Clinical features of obstructive sleep apnea hypoventilation syndrome in otherwise healthy children. Pediatr Pulmonol. 1999;27:403–9.PubMedCrossRef
91.
go back to reference American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130:713–56.CrossRef American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130:713–56.CrossRef
92.
go back to reference Gachelin E, Reynaud R, Dubus JC, Stremler-Le BN. Detection and treatment of respiratory disorders in obese children: obstructive sleep apnea syndrome and obesity hypoventilation syndrome. Arch Pediatr. 2015;22:908–15.PubMedCrossRef Gachelin E, Reynaud R, Dubus JC, Stremler-Le BN. Detection and treatment of respiratory disorders in obese children: obstructive sleep apnea syndrome and obesity hypoventilation syndrome. Arch Pediatr. 2015;22:908–15.PubMedCrossRef
93.
go back to reference McLachlan CR, Poulton R, Car G, et al. Adiposity, asthma, and airway inflammation. J Allergy Clin Immunol. 2007;119:634–9.PubMedCrossRef McLachlan CR, Poulton R, Car G, et al. Adiposity, asthma, and airway inflammation. J Allergy Clin Immunol. 2007;119:634–9.PubMedCrossRef
94.
go back to reference Santamaria F, Montella S, De Stefano S, et al. Asthma, atopy, and airway inflammation in obese children. J Allergy Clin Immunol. 2007;120:965–7.PubMedCrossRef Santamaria F, Montella S, De Stefano S, et al. Asthma, atopy, and airway inflammation in obese children. J Allergy Clin Immunol. 2007;120:965–7.PubMedCrossRef
95.
go back to reference Vitelli O, Tabarrini A, Miano S, et al. Impact of obesity on cognitive outcome in children with sleep-disordered breathing. Sleep Med. 2015;16:625–30.PubMedCrossRef Vitelli O, Tabarrini A, Miano S, et al. Impact of obesity on cognitive outcome in children with sleep-disordered breathing. Sleep Med. 2015;16:625–30.PubMedCrossRef
96.
go back to reference Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev. 2006;7:239–50.PubMedCrossRef Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev. 2006;7:239–50.PubMedCrossRef
97.
98.
go back to reference Bhatia NN, Pirpiris M, Otsuka NY. Body mass index in patients with slipped capital femoral epiphysis. J Pediatr Orthop. 2006;26:197–9.PubMedCrossRef Bhatia NN, Pirpiris M, Otsuka NY. Body mass index in patients with slipped capital femoral epiphysis. J Pediatr Orthop. 2006;26:197–9.PubMedCrossRef
99.
go back to reference Loder RT, Skopelja EN. The epidemiology and demographics of slipped capital femoral epiphysis. ISRN Orthop. 2011;2011:486512.PubMedPubMedCentral Loder RT, Skopelja EN. The epidemiology and demographics of slipped capital femoral epiphysis. ISRN Orthop. 2011;2011:486512.PubMedPubMedCentral
101.
go back to reference Bout-Tabaku S, Shults J, Zemel BS, et al. Obesity is associated with greater valgus knee alignment in pubertal children, and higher body mass index is associated with greater variability in knee alignment in girls. J Rheumatol. 2015;42:126–33.PubMedCrossRef Bout-Tabaku S, Shults J, Zemel BS, et al. Obesity is associated with greater valgus knee alignment in pubertal children, and higher body mass index is associated with greater variability in knee alignment in girls. J Rheumatol. 2015;42:126–33.PubMedCrossRef
102.
go back to reference Jankowicz-Szymanska A, Mikolajczyk E. Genu valgum and flat feet in children with healthy and excessive body weight. Pediatr Phys Ther. 2016;28:200–6.PubMedCrossRef Jankowicz-Szymanska A, Mikolajczyk E. Genu valgum and flat feet in children with healthy and excessive body weight. Pediatr Phys Ther. 2016;28:200–6.PubMedCrossRef
103.
104.
go back to reference Loder RT, Aronsson DD, Weinstein SL, Breur GJ, Ganz R, Leunig M. Slipped capital femoral epiphysis. Instr Course Lect. 2008;57:473–98.PubMed Loder RT, Aronsson DD, Weinstein SL, Breur GJ, Ganz R, Leunig M. Slipped capital femoral epiphysis. Instr Course Lect. 2008;57:473–98.PubMed
105.
go back to reference Harris EJ, Vanore JV, Thomas JL, et al. Diagnosis and treatment of pediatric flatfoot. J Foot Ankle Surg. 2004;43:341–73.PubMedCrossRef Harris EJ, Vanore JV, Thomas JL, et al. Diagnosis and treatment of pediatric flatfoot. J Foot Ankle Surg. 2004;43:341–73.PubMedCrossRef
106.
107.
go back to reference Lazar-Antman MA, Leet AI. Effects of obesity on pediatric fracture care and management. J Bone Joint Surg Am. 2012;94:855–61.PubMedCrossRef Lazar-Antman MA, Leet AI. Effects of obesity on pediatric fracture care and management. J Bone Joint Surg Am. 2012;94:855–61.PubMedCrossRef
108.
109.
go back to reference Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16:1337–42.PubMedCrossRef Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16:1337–42.PubMedCrossRef
110.
go back to reference Bachrach LK, Sills IN. Section on endocrinology. Bone densitometry in children and adolescents. Pediatrics. 2011;127:189–94.PubMedCrossRef Bachrach LK, Sills IN. Section on endocrinology. Bone densitometry in children and adolescents. Pediatrics. 2011;127:189–94.PubMedCrossRef
111.
go back to reference Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008;73:19–33.PubMedCrossRef Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008;73:19–33.PubMedCrossRef
112.
go back to reference Savino A, Pelliccia P, Chiarelli F, Mohn A. Obesity-related renal injury in childhood. Horm Res Pædiatrics. 2010;73:303–11.CrossRef Savino A, Pelliccia P, Chiarelli F, Mohn A. Obesity-related renal injury in childhood. Horm Res Pædiatrics. 2010;73:303–11.CrossRef
113.
go back to reference Filler G, Reimão SM, Kathiravelu A, Grimmer J, Feber J, Drukker A. Pediatric nephrology patients are overweight: 20 years’ experience in a single Canadian tertiary pediatric nephrology clinic. Int Urol Nephrol. 2007;39:1235–40.PubMedCrossRef Filler G, Reimão SM, Kathiravelu A, Grimmer J, Feber J, Drukker A. Pediatric nephrology patients are overweight: 20 years’ experience in a single Canadian tertiary pediatric nephrology clinic. Int Urol Nephrol. 2007;39:1235–40.PubMedCrossRef
114.
go back to reference Espinoza R, Gracida C, Cancino J, Ibarra A. Effect of obese living donors on the outcome and metabolic features in recipients of kidney transplantation. Transplant Proc. 2006;38:888–9.PubMedCrossRef Espinoza R, Gracida C, Cancino J, Ibarra A. Effect of obese living donors on the outcome and metabolic features in recipients of kidney transplantation. Transplant Proc. 2006;38:888–9.PubMedCrossRef
115.
go back to reference Burgert TS, Dziura J, Yeckel C, et al. Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors. Int J Obes. 2006;30:273–80.CrossRef Burgert TS, Dziura J, Yeckel C, et al. Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors. Int J Obes. 2006;30:273–80.CrossRef
116.
go back to reference Hirschler V, Molinari C, Maccallini G, Aranda C. Is albuminuria associated with obesity in school children? Pediatr Diabetes. 2010;11:322–30.PubMedCrossRef Hirschler V, Molinari C, Maccallini G, Aranda C. Is albuminuria associated with obesity in school children? Pediatr Diabetes. 2010;11:322–30.PubMedCrossRef
117.
go back to reference Savino A, Pelliccia P, Giannini C, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol. 2011;26:749–58.PubMedCrossRef Savino A, Pelliccia P, Giannini C, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol. 2011;26:749–58.PubMedCrossRef
118.
go back to reference Franchini S, Savino A, Marcovecchio ML, Tumini S, Chiarelli F, Mohn A. The effect of obesity and type 1 diabetes on renal function in children and adolescents. Pediatr Diabetes. 2015;16:427–33.PubMedCrossRef Franchini S, Savino A, Marcovecchio ML, Tumini S, Chiarelli F, Mohn A. The effect of obesity and type 1 diabetes on renal function in children and adolescents. Pediatr Diabetes. 2015;16:427–33.PubMedCrossRef
119.
go back to reference Goknar N, Oktem F, Ozgen IT, et al. Determination of early urinary renal injury markers in obese children. Pediatr Nephrol. 2015;30:139–44.PubMedCrossRef Goknar N, Oktem F, Ozgen IT, et al. Determination of early urinary renal injury markers in obese children. Pediatr Nephrol. 2015;30:139–44.PubMedCrossRef
120.
go back to reference Stevenson SB. Pseudotumor cerebri: yet another reason to fight obesity. J Pediatr Health Care. 2008;22:40–3.PubMedCrossRef Stevenson SB. Pseudotumor cerebri: yet another reason to fight obesity. J Pediatr Health Care. 2008;22:40–3.PubMedCrossRef
121.
go back to reference Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15:78–91.PubMedCrossRef Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15:78–91.PubMedCrossRef
122.
go back to reference Paley GL, Sheldon CA, Burrows EK, Chilutti MR, Liu GT, McCormack SE. Overweight and obesity in pediatric secondary pseudotumor cerebri syndrome. Am J Ophthalmol. 2015;159:344–52.PubMedCrossRef Paley GL, Sheldon CA, Burrows EK, Chilutti MR, Liu GT, McCormack SE. Overweight and obesity in pediatric secondary pseudotumor cerebri syndrome. Am J Ophthalmol. 2015;159:344–52.PubMedCrossRef
123.
go back to reference Brara SM, Koebnick C, Porter AH, Langer-Gould A. Pediatric idiopathic intracranial hypertension and extreme childhood obesity. J Pediatr. 2012;161:602–7.PubMedPubMedCentralCrossRef Brara SM, Koebnick C, Porter AH, Langer-Gould A. Pediatric idiopathic intracranial hypertension and extreme childhood obesity. J Pediatr. 2012;161:602–7.PubMedPubMedCentralCrossRef
124.
go back to reference Salpietro V, Chimenz R, Arrigo T, Ruggieri M. Pediatric idiopathic intracranial hypertension and extreme childhood obesity: a role for weight gain. J Pediatr. 2013;162:1084.PubMedCrossRef Salpietro V, Chimenz R, Arrigo T, Ruggieri M. Pediatric idiopathic intracranial hypertension and extreme childhood obesity: a role for weight gain. J Pediatr. 2013;162:1084.PubMedCrossRef
125.
go back to reference Stiebel-Kalish H, Serov I, Sella R, Chodick G, Snir M. Childhood overweight or obesity increases the risk of IIH recurrence fivefold. Int J Obes. 2014;38:1475–7.CrossRef Stiebel-Kalish H, Serov I, Sella R, Chodick G, Snir M. Childhood overweight or obesity increases the risk of IIH recurrence fivefold. Int J Obes. 2014;38:1475–7.CrossRef
126.
go back to reference Bassan H, Berkner L, Stolovitch C, Kesler A. Asymptomatic idiopathic intracranial hypertension in children. Acta Neurol Scand. 2008;118:251–5.PubMedCrossRef Bassan H, Berkner L, Stolovitch C, Kesler A. Asymptomatic idiopathic intracranial hypertension in children. Acta Neurol Scand. 2008;118:251–5.PubMedCrossRef
127.
go back to reference Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81:1159–65.PubMedCrossRef Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81:1159–65.PubMedCrossRef
128.
go back to reference Ravid S, Shahar E, Schiff A, Gordon S. Obesity in children with headaches: association with headache type, frequency, and disability. Headache. 2013;53:954–61.PubMedCrossRef Ravid S, Shahar E, Schiff A, Gordon S. Obesity in children with headaches: association with headache type, frequency, and disability. Headache. 2013;53:954–61.PubMedCrossRef
130.
go back to reference Robberstad L, Dyb G, Hagen K, Stovner LJ, Holmen TL, Zwart JA. An unfavorable lifestyle and recurrent headaches among adolescents: the HUNT study. Neurology. 2010;75:712–7.PubMedCrossRef Robberstad L, Dyb G, Hagen K, Stovner LJ, Holmen TL, Zwart JA. An unfavorable lifestyle and recurrent headaches among adolescents: the HUNT study. Neurology. 2010;75:712–7.PubMedCrossRef
131.
go back to reference Verrotti A, Agostinelli S, D'Egidio C, et al. Impact of a weight loss program on migraine in obese adolescents. Eur J Neurol. 2013;20:394–7.PubMedCrossRef Verrotti A, Agostinelli S, D'Egidio C, et al. Impact of a weight loss program on migraine in obese adolescents. Eur J Neurol. 2013;20:394–7.PubMedCrossRef
132.
go back to reference Anderson SE, Cohen P, Naumova EN, Jacques PF, Must A. Adolescent obesity and risk for subsequent major depressive disorder and anxiety disorder: prospective evidence. Psychosom Med. 2007;69:740–7.PubMedCrossRef Anderson SE, Cohen P, Naumova EN, Jacques PF, Must A. Adolescent obesity and risk for subsequent major depressive disorder and anxiety disorder: prospective evidence. Psychosom Med. 2007;69:740–7.PubMedCrossRef
133.
go back to reference Roth B, Munsch S, Meyer A, Isler E, Schneider S. The association between mothers psychopatology, childrens’ competences and psychopatological well-being in obese children. Eat Weight Disord. 2008;13:129–36.PubMedCrossRef Roth B, Munsch S, Meyer A, Isler E, Schneider S. The association between mothers psychopatology, childrens’ competences and psychopatological well-being in obese children. Eat Weight Disord. 2008;13:129–36.PubMedCrossRef
134.
go back to reference Vander Wal JS, Mitchell ER. Psychological complications of pediatric obesity. Pediatr Clin N Am. 2011;58:1393–401.CrossRef Vander Wal JS, Mitchell ER. Psychological complications of pediatric obesity. Pediatr Clin N Am. 2011;58:1393–401.CrossRef
136.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington: American Psychiatric Association; 2013. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington: American Psychiatric Association; 2013.
137.
go back to reference Glasofer DR, Tanofsky-Kraff M, Eddy KT, et al. Binge eating in overweight treatment-seeking adolescents. J Pediatr Psychol. 2007;32:95–105.PubMedCrossRef Glasofer DR, Tanofsky-Kraff M, Eddy KT, et al. Binge eating in overweight treatment-seeking adolescents. J Pediatr Psychol. 2007;32:95–105.PubMedCrossRef
138.
go back to reference Sonneville KR, Calzo JP, Horton NJ, et al. Childhood hyperactivity/inattention and eating disturbances predict binge eating in adolescence. Psychol Med. 2015;22:1–10. Sonneville KR, Calzo JP, Horton NJ, et al. Childhood hyperactivity/inattention and eating disturbances predict binge eating in adolescence. Psychol Med. 2015;22:1–10.
139.
140.
go back to reference Astrup A, Raben A, Geiker N. The role of higher protein diets in weight control and obesity-related comorbidities. Int J Obes. 2015;39:721–6.CrossRef Astrup A, Raben A, Geiker N. The role of higher protein diets in weight control and obesity-related comorbidities. Int J Obes. 2015;39:721–6.CrossRef
141.
go back to reference Epstein LH, Valoski A, Wing RR, McCurley J. Ten-year follow-up of behavioral, family-based treatment for obese children. JAMA. 1990;264:2519–23.PubMedCrossRef Epstein LH, Valoski A, Wing RR, McCurley J. Ten-year follow-up of behavioral, family-based treatment for obese children. JAMA. 1990;264:2519–23.PubMedCrossRef
142.
go back to reference Golan M, Weizman A. Familial approach to the treatment of childhood obesity: conceptual model. J Nutr Educ Behav. 2001;33:102–7.CrossRef Golan M, Weizman A. Familial approach to the treatment of childhood obesity: conceptual model. J Nutr Educ Behav. 2001;33:102–7.CrossRef
143.
go back to reference Golan M, Crow S. Targeting parents exclusively in the treatment of childhood obesity: long-term results. Obes Res. 2004;12:357–61.PubMedCrossRef Golan M, Crow S. Targeting parents exclusively in the treatment of childhood obesity: long-term results. Obes Res. 2004;12:357–61.PubMedCrossRef
144.
go back to reference Hollands GJ, Shemilt I, Marteau TM, et al. Portion, package or tableware size for changing selection and consumption of food, alcohol and tobacco. Cochrane Database Syst Rev 2015; 9:CD011045. Hollands GJ, Shemilt I, Marteau TM, et al. Portion, package or tableware size for changing selection and consumption of food, alcohol and tobacco. Cochrane Database Syst Rev 2015; 9:CD011045.
145.
go back to reference Barlow SE, Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.PubMedCrossRef Barlow SE, Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.PubMedCrossRef
146.
go back to reference Burrows TL, Martin RJ, Collins CE. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J Am Diet Assoc. 2010;110:1501–10.PubMedCrossRef Burrows TL, Martin RJ, Collins CE. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J Am Diet Assoc. 2010;110:1501–10.PubMedCrossRef
148.
go back to reference Jääskeläinen A, Schwab U, Kolehmainen M, Pirkola J, Järvelin MR, Laitinen J. Associations of meal frequency and breakfast with obesity and metabolic syndrome traits in adolescents of northern Finland birth cohort 1986. Nutr Metab Cardiovasc Dis. 2013;23:1002–9.PubMedCrossRef Jääskeläinen A, Schwab U, Kolehmainen M, Pirkola J, Järvelin MR, Laitinen J. Associations of meal frequency and breakfast with obesity and metabolic syndrome traits in adolescents of northern Finland birth cohort 1986. Nutr Metab Cardiovasc Dis. 2013;23:1002–9.PubMedCrossRef
149.
go back to reference Schlundt DG, Hill JO, Sbrocco T, Pope-Cordle J, Sharp T. The role of breakfast in the treatment of obesity: a randomized clinical trial. Am J Clin Nutr. 1992;55:645–51.PubMedCrossRef Schlundt DG, Hill JO, Sbrocco T, Pope-Cordle J, Sharp T. The role of breakfast in the treatment of obesity: a randomized clinical trial. Am J Clin Nutr. 1992;55:645–51.PubMedCrossRef
150.
go back to reference Spear BA, Barlow SE, Ervin C, et al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics. 2007;120(Suppl 4):S254–88.PubMedCrossRef Spear BA, Barlow SE, Ervin C, et al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics. 2007;120(Suppl 4):S254–88.PubMedCrossRef
151.
go back to reference James J, Thomas P, Cavan D, Kerr D. Preventing childhood obesity by reducing consumption of carbonated drinks: cluster randomised controlled trial. BMJ. 2004;328:1237.PubMedPubMedCentralCrossRef James J, Thomas P, Cavan D, Kerr D. Preventing childhood obesity by reducing consumption of carbonated drinks: cluster randomised controlled trial. BMJ. 2004;328:1237.PubMedPubMedCentralCrossRef
152.
go back to reference Taveras EM, Gortmaker SL, Hohman KH, et al. Randomized controlled trial to improve primary care to prevent and manage childhood obesity: the high five for kids study. Arch Pediatr Adolesc Med. 2011;165:714–22.PubMedCrossRef Taveras EM, Gortmaker SL, Hohman KH, et al. Randomized controlled trial to improve primary care to prevent and manage childhood obesity: the high five for kids study. Arch Pediatr Adolesc Med. 2011;165:714–22.PubMedCrossRef
153.
go back to reference Kovács E, Siani A, Konstabel K, et al. Adherence to the obesity-related lifestyle intervention targets in the IDEFICS study. Int J Obes. 2014;38(Suppl 2):S144–51.CrossRef Kovács E, Siani A, Konstabel K, et al. Adherence to the obesity-related lifestyle intervention targets in the IDEFICS study. Int J Obes. 2014;38(Suppl 2):S144–51.CrossRef
154.
go back to reference Maximova K, Ambler KA, Rudko JN, Chui N, Ball GD. Ready, set, go! Motivation and lifestyle habits in parents of children referred for obesity management. Pediatr Obes. 2015;10:353–60.PubMedCrossRef Maximova K, Ambler KA, Rudko JN, Chui N, Ball GD. Ready, set, go! Motivation and lifestyle habits in parents of children referred for obesity management. Pediatr Obes. 2015;10:353–60.PubMedCrossRef
155.
go back to reference Savage JS, Fisher JO, Marini M, Birch LL. Serving smaller age-appropriate entree portions to children aged 3-5 y increases fruit and vegetable intake and reduces energy density and energy intake at lunch. Am J Clin Nutr. 2012;95:335–41.PubMedCrossRef Savage JS, Fisher JO, Marini M, Birch LL. Serving smaller age-appropriate entree portions to children aged 3-5 y increases fruit and vegetable intake and reduces energy density and energy intake at lunch. Am J Clin Nutr. 2012;95:335–41.PubMedCrossRef
156.
go back to reference Birch LL, Savage JS, Fischer JO. Right sizing prevention. Food portion size effects on children's eating and weight. Appetite. 2015;88:11–6.PubMedCrossRef Birch LL, Savage JS, Fischer JO. Right sizing prevention. Food portion size effects on children's eating and weight. Appetite. 2015;88:11–6.PubMedCrossRef
157.
go back to reference Società Italiana di Nutrizione Umana. Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione italiana (LARN). IV Revisione. Milano: SICsS Editore; 2014. Società Italiana di Nutrizione Umana. Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione italiana (LARN). IV Revisione. Milano: SICsS Editore; 2014.
158.
go back to reference Suskind RM, Sothern MS, Farris RP, et al. Recent advances in the treatment of childhood obesity. Ann N Y Acad Sci. 1993;699:181–99.PubMedCrossRef Suskind RM, Sothern MS, Farris RP, et al. Recent advances in the treatment of childhood obesity. Ann N Y Acad Sci. 1993;699:181–99.PubMedCrossRef
160.
go back to reference Sothern M, Udall JN, Suskind RM, Vargas A, Blecker U. Weight loss and growth velocity in obese children after very low calorie diet, exercise, and behavior modification. Acta Paediatr. 2000;89:1036–43.PubMedCrossRef Sothern M, Udall JN, Suskind RM, Vargas A, Blecker U. Weight loss and growth velocity in obese children after very low calorie diet, exercise, and behavior modification. Acta Paediatr. 2000;89:1036–43.PubMedCrossRef
161.
go back to reference Epstein LH, Squires S. The stoplight diet for children: an eight week program for parents and children. Boston: Little Brown & Co; 1988. Epstein LH, Squires S. The stoplight diet for children: an eight week program for parents and children. Boston: Little Brown & Co; 1988.
162.
go back to reference Epstein LH, Paluch RA, Beecher MD, et al. Increasing healthy eating vs. reducing high energy-dense foods to treat pediatric obesity. Obesity (Silver Spring). 2008;16:318–26.CrossRef Epstein LH, Paluch RA, Beecher MD, et al. Increasing healthy eating vs. reducing high energy-dense foods to treat pediatric obesity. Obesity (Silver Spring). 2008;16:318–26.CrossRef
163.
go back to reference Esfahani A, Wong JM, Mirrahimi A, Villa CR, Kendall CW. The application of the glycemic index and glycemic load in weight loss: a review of the clinical evidence. IUBMB Life. 2011;63:7–13.PubMedCrossRef Esfahani A, Wong JM, Mirrahimi A, Villa CR, Kendall CW. The application of the glycemic index and glycemic load in weight loss: a review of the clinical evidence. IUBMB Life. 2011;63:7–13.PubMedCrossRef
164.
go back to reference Kirk S, Brehm B, Saelens BE, et al. Role of carbohydrate modification in weight management among obese children: a randomized clinical trial. J Pediatr. 2012;161:320–7.PubMedPubMedCentralCrossRef Kirk S, Brehm B, Saelens BE, et al. Role of carbohydrate modification in weight management among obese children: a randomized clinical trial. J Pediatr. 2012;161:320–7.PubMedPubMedCentralCrossRef
165.
go back to reference Mirza NM, Palmer MG, Sinclair KB, et al. Effects of a low glycemic load or a low-fat dietary intervention on body weight in obese Hispanic American children and adolescents: a randomized controlled trial. Am J Clin Nutr. 2013;97:276–85.PubMedCrossRef Mirza NM, Palmer MG, Sinclair KB, et al. Effects of a low glycemic load or a low-fat dietary intervention on body weight in obese Hispanic American children and adolescents: a randomized controlled trial. Am J Clin Nutr. 2013;97:276–85.PubMedCrossRef
166.
go back to reference Atlantis E, Barnes EH, Singh MA. Efficacy of exercise for treating overweight in children and adolescents: a systematic review. Int J Obes. 2006;30:1027–40.CrossRef Atlantis E, Barnes EH, Singh MA. Efficacy of exercise for treating overweight in children and adolescents: a systematic review. Int J Obes. 2006;30:1027–40.CrossRef
167.
go back to reference McGovern L, Johnson JN, Paulo R, et al. Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab. 2008;93:4600–5.PubMedCrossRef McGovern L, Johnson JN, Paulo R, et al. Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab. 2008;93:4600–5.PubMedCrossRef
168.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.PubMedPubMedCentralCrossRef Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.PubMedPubMedCentralCrossRef
169.
go back to reference Brambilla P, Pozzobon G, Pietrobelli A. Physical activity as the main therapeutic tool for metabolic syndrome in childhood. Int J Obes. 2011;35:16–28.CrossRef Brambilla P, Pozzobon G, Pietrobelli A. Physical activity as the main therapeutic tool for metabolic syndrome in childhood. Int J Obes. 2011;35:16–28.CrossRef
170.
go back to reference Kelley GA, Kelley KS, Pate RR. Exercise and BMI in overweight and obese children and adolescents: a systematic review and trial sequential meta-analysis. Biomed Res Int. 2015;2015:704539.PubMedPubMedCentral Kelley GA, Kelley KS, Pate RR. Exercise and BMI in overweight and obese children and adolescents: a systematic review and trial sequential meta-analysis. Biomed Res Int. 2015;2015:704539.PubMedPubMedCentral
171.
go back to reference Stoner L, Rowlands D, Morrison A, et al. Efficacy of exercise intervention for weight loss in overweight and obese adolescents: meta-analysis and implications. Sports Med. 2016;46:1737–51.PubMedCrossRef Stoner L, Rowlands D, Morrison A, et al. Efficacy of exercise intervention for weight loss in overweight and obese adolescents: meta-analysis and implications. Sports Med. 2016;46:1737–51.PubMedCrossRef
172.
go back to reference Ho M, Garnett SP, Baur LA, et al. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA Pediatr. 2013;167:759–68.PubMedCrossRef Ho M, Garnett SP, Baur LA, et al. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. JAMA Pediatr. 2013;167:759–68.PubMedCrossRef
173.
go back to reference García-Hermoso A, Sánchez-López M, Martínez-Vizcaíno V. Effects of aerobic plus resistance exercise on body composition related variables in pediatric obesity: a systematic review and meta-analysis of randomized controlled trials. Pediatr Exerc Sci. 2015;27:431–40.PubMedCrossRef García-Hermoso A, Sánchez-López M, Martínez-Vizcaíno V. Effects of aerobic plus resistance exercise on body composition related variables in pediatric obesity: a systematic review and meta-analysis of randomized controlled trials. Pediatr Exerc Sci. 2015;27:431–40.PubMedCrossRef
174.
go back to reference Strong WB, Malina RM, Blimkie CJ, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.PubMedCrossRef Strong WB, Malina RM, Blimkie CJ, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.PubMedCrossRef
175.
go back to reference Janssen I. Physical activity guidelines for children and youth. Appl Physiol Nutr Metab. 2007;32:S109–21.CrossRef Janssen I. Physical activity guidelines for children and youth. Appl Physiol Nutr Metab. 2007;32:S109–21.CrossRef
176.
go back to reference LeBlanc AG, Spence JC, Carson V, et al. Systematic review of sedentary behaviour and health indicators in the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37:753–72.PubMedCrossRef LeBlanc AG, Spence JC, Carson V, et al. Systematic review of sedentary behaviour and health indicators in the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37:753–72.PubMedCrossRef
177.
go back to reference Velde SJT, van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13:56–74.CrossRef Velde SJT, van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13:56–74.CrossRef
178.
go back to reference de Rezende LF, Rodrigues Lopes M, Rey-López JP, Matsudo VK, Luiz OC. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9:e105620.PubMedPubMedCentralCrossRef de Rezende LF, Rodrigues Lopes M, Rey-López JP, Matsudo VK, Luiz OC. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9:e105620.PubMedPubMedCentralCrossRef
179.
go back to reference Pearson N, Braithwaite RE, Biddle SJ, van Sluijs EM, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.PubMedPubMedCentralCrossRef Pearson N, Braithwaite RE, Biddle SJ, van Sluijs EM, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.PubMedPubMedCentralCrossRef
180.
go back to reference Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults a systematic review. Am J Prev Med. 2011;41:178–88.PubMedCrossRef Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults a systematic review. Am J Prev Med. 2011;41:178–88.PubMedCrossRef
181.
go back to reference Azevedo LB, Ling J, Soos I, Robalino S, Ells L. The effectiveness of sedentary behaviour interventions for reducing body mass index in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17:623–35.PubMedCrossRef Azevedo LB, Ling J, Soos I, Robalino S, Ells L. The effectiveness of sedentary behaviour interventions for reducing body mass index in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17:623–35.PubMedCrossRef
182.
go back to reference Lamboglia CM, da Silva VT, de Vasconcelos Filho JE, et al. Exergaming as a strategic tool in the fight against childhood obesity: a systematic review. J Obes. 2013;2013:438364.PubMedPubMedCentralCrossRef Lamboglia CM, da Silva VT, de Vasconcelos Filho JE, et al. Exergaming as a strategic tool in the fight against childhood obesity: a systematic review. J Obes. 2013;2013:438364.PubMedPubMedCentralCrossRef
183.
go back to reference Gao Z, Chen S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes Rev. 2014;15:676–91.PubMedCrossRef Gao Z, Chen S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes Rev. 2014;15:676–91.PubMedCrossRef
184.
185.
go back to reference Gribbon A, McNeil J, Jay O, Tremblay MS, Chaput JP. Active video games and energy balance in male adolescents: a randomized crossover trial. Am J Clin Nutr. 2015;101:1126–34.PubMedCrossRef Gribbon A, McNeil J, Jay O, Tremblay MS, Chaput JP. Active video games and energy balance in male adolescents: a randomized crossover trial. Am J Clin Nutr. 2015;101:1126–34.PubMedCrossRef
186.
go back to reference McNarry MA, Mackintosh KA. Investigating the relative exercise intensity of exergames in prepubertal children. Games Health J. 2016;5:135–40.PubMedCrossRef McNarry MA, Mackintosh KA. Investigating the relative exercise intensity of exergames in prepubertal children. Games Health J. 2016;5:135–40.PubMedCrossRef
187.
go back to reference Staiano AE, Marker AM, Beyl RA, Hsia DS, Katzmarzyk PT, Newton RL. A randomized controlled trial of dance exergaming for exercise training in overweight and obese adolescent girls. Pediatr Obes. 2017;12:120–8.PubMedCrossRef Staiano AE, Marker AM, Beyl RA, Hsia DS, Katzmarzyk PT, Newton RL. A randomized controlled trial of dance exergaming for exercise training in overweight and obese adolescent girls. Pediatr Obes. 2017;12:120–8.PubMedCrossRef
188.
go back to reference Vignolo M, Rossi F, Bardazza G, et al. Five year follow-up of a cognitive-behavioural lifestyle multidisciplinary programme for childhood obesity outpatient treatment. Eur J Clin Nutr. 2008;62:1047–57.PubMedCrossRef Vignolo M, Rossi F, Bardazza G, et al. Five year follow-up of a cognitive-behavioural lifestyle multidisciplinary programme for childhood obesity outpatient treatment. Eur J Clin Nutr. 2008;62:1047–57.PubMedCrossRef
189.
go back to reference Valerio G, Licenziati MR, Tanas R, et al. Management of children and adolescents with severe obesity. Minerva Pediatr. 2012;64:413–31.PubMed Valerio G, Licenziati MR, Tanas R, et al. Management of children and adolescents with severe obesity. Minerva Pediatr. 2012;64:413–31.PubMed
190.
go back to reference Altman M, Wilfley DE. Evidence update on the treatment of overweight and obesity in children and adolescents. J Clin Child Adolesc Psychol. 2015;44:521–37.PubMedCrossRef Altman M, Wilfley DE. Evidence update on the treatment of overweight and obesity in children and adolescents. J Clin Child Adolesc Psychol. 2015;44:521–37.PubMedCrossRef
191.
go back to reference Wilfley DE, Stein RI, Saelens BE, et al. Efficacy of maintenance treatment approaches for childhood overweight: a randomized controlled trial. JAMA. 2007;298:1661–73.PubMedCrossRef Wilfley DE, Stein RI, Saelens BE, et al. Efficacy of maintenance treatment approaches for childhood overweight: a randomized controlled trial. JAMA. 2007;298:1661–73.PubMedCrossRef
192.
go back to reference West F, Sanders MR, Cleghorn GJ, Davies PS. Randomized clinical trial of a family-based lifestyle intervention for childhood obesity involving parents as the exclusive agents of change. Behav Res Ther. 2010;48:1170–9.PubMedCrossRef West F, Sanders MR, Cleghorn GJ, Davies PS. Randomized clinical trial of a family-based lifestyle intervention for childhood obesity involving parents as the exclusive agents of change. Behav Res Ther. 2010;48:1170–9.PubMedCrossRef
193.
go back to reference Boutelle KN, Cafri G, Crow SJ. Parent-only treatment for childhood obesity: a randomized controlled trial. Obesity. 2011;19:574–80.PubMedCrossRef Boutelle KN, Cafri G, Crow SJ. Parent-only treatment for childhood obesity: a randomized controlled trial. Obesity. 2011;19:574–80.PubMedCrossRef
194.
go back to reference Serra-Paya N, Ensenyat A, Castro-Viñuales I, et al. Effectiveness of a multi-component intervention for overweight and obese children (Nereu program): a randomized controlled trial. PLoS One. 2015;10:e0144502.PubMedPubMedCentralCrossRef Serra-Paya N, Ensenyat A, Castro-Viñuales I, et al. Effectiveness of a multi-component intervention for overweight and obese children (Nereu program): a randomized controlled trial. PLoS One. 2015;10:e0144502.PubMedPubMedCentralCrossRef
195.
go back to reference Ho M, Garnett SP, Baur L, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130:e1647–71.PubMedCrossRef Ho M, Garnett SP, Baur L, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130:e1647–71.PubMedCrossRef
196.
go back to reference Golan M, Kaufman V, Shahar DR. Childhood obesity treatment: targeting parents exclusively v. Parents and children. Br J Nutr. 2006;95:1008–15.PubMedCrossRef Golan M, Kaufman V, Shahar DR. Childhood obesity treatment: targeting parents exclusively v. Parents and children. Br J Nutr. 2006;95:1008–15.PubMedCrossRef
197.
go back to reference Epstein LH, Paluch RA, Wrotniak BH, et al. Cost effectiveness of family-based group treatment for child and parental obesity. Child Obes. 2014;10:114–21.PubMedCrossRef Epstein LH, Paluch RA, Wrotniak BH, et al. Cost effectiveness of family-based group treatment for child and parental obesity. Child Obes. 2014;10:114–21.PubMedCrossRef
198.
go back to reference Iaccarino Idelson P, Zito E, Mozzillo E, et al. Changing parental style for the management of childhood obesity: a multi-component group experience. Int J Child Health Nutr. 2015;4:213–8.CrossRef Iaccarino Idelson P, Zito E, Mozzillo E, et al. Changing parental style for the management of childhood obesity: a multi-component group experience. Int J Child Health Nutr. 2015;4:213–8.CrossRef
200.
go back to reference Lagger G, Pataky Z, Golay A. Efficacy of therapeutic patient education in chronic diseases and obesity. Patient Educ Couns. 2010;79:283–6.PubMedCrossRef Lagger G, Pataky Z, Golay A. Efficacy of therapeutic patient education in chronic diseases and obesity. Patient Educ Couns. 2010;79:283–6.PubMedCrossRef
201.
go back to reference Albano MG, Golay A, Vincent DA, Cyril Crozet C, d’Ivernois JF. Therapeutic patient education in obesity: analysis of the 2005–2010 literature. Ther Patient Educ. 2012;4:S101–10.CrossRef Albano MG, Golay A, Vincent DA, Cyril Crozet C, d’Ivernois JF. Therapeutic patient education in obesity: analysis of the 2005–2010 literature. Ther Patient Educ. 2012;4:S101–10.CrossRef
202.
go back to reference Bloom T, Sharpe L, Mullan B, Zuccker N. A pilot evalutation of appetite-awareness training in the treatment of childhood overweight and obesity: a preliminary investigation. Int J Eat Dis. 2013;46:47–51.CrossRef Bloom T, Sharpe L, Mullan B, Zuccker N. A pilot evalutation of appetite-awareness training in the treatment of childhood overweight and obesity: a preliminary investigation. Int J Eat Dis. 2013;46:47–51.CrossRef
203.
go back to reference Boutelle KN, Zucker N, Peterson CB, Rydell S, Carlson J, Harnack LJ. An intervention based on Schachter’s externality theory for overweight children: the regulation of cues pilot. J Pediatr Psychol. 2014;39:405–17.PubMedPubMedCentralCrossRef Boutelle KN, Zucker N, Peterson CB, Rydell S, Carlson J, Harnack LJ. An intervention based on Schachter’s externality theory for overweight children: the regulation of cues pilot. J Pediatr Psychol. 2014;39:405–17.PubMedPubMedCentralCrossRef
204.
go back to reference Bryant M, Ashton L, Brown J, et al. Systematic review to identify and appraise outcome measures used to evaluate childhood obesity treatment interventions (CoOR): evidence of purpose, application, validity, reliability and sensitivity. Health Technol Assess. 2014;18:1–380.CrossRefPubMedPubMedCentral Bryant M, Ashton L, Brown J, et al. Systematic review to identify and appraise outcome measures used to evaluate childhood obesity treatment interventions (CoOR): evidence of purpose, application, validity, reliability and sensitivity. Health Technol Assess. 2014;18:1–380.CrossRefPubMedPubMedCentral
205.
go back to reference Reinehr T, Lass N, Toschke C, Rothermel J, Lanzinger S, Holl RW. Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J Clin Endocrinol Metab. 2016;101:3171–9.PubMedCrossRef Reinehr T, Lass N, Toschke C, Rothermel J, Lanzinger S, Holl RW. Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J Clin Endocrinol Metab. 2016;101:3171–9.PubMedCrossRef
206.
go back to reference Maffeis C, Banzato C, Talamini G, Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr. 2008;152:207–13.PubMedCrossRef Maffeis C, Banzato C, Talamini G, Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr. 2008;152:207–13.PubMedCrossRef
207.
go back to reference Taylor RW, Williams SM, Grant AM, Taylor BJ, Goulding A. Predictive ability of waist-to-height in relation to adiposity in children is not improved with age and sex-specific values. Obesity (Silver Spring). 2011;19:1062–8.CrossRef Taylor RW, Williams SM, Grant AM, Taylor BJ, Goulding A. Predictive ability of waist-to-height in relation to adiposity in children is not improved with age and sex-specific values. Obesity (Silver Spring). 2011;19:1062–8.CrossRef
208.
go back to reference Brambilla P, Bedogni G, Heo M, Pietrobelli A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int J Obes. 2013;37:943–6.CrossRef Brambilla P, Bedogni G, Heo M, Pietrobelli A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int J Obes. 2013;37:943–6.CrossRef
209.
go back to reference Hunt LP, Ford A, Sabin MA, Crowne EC, Shield JP. Clinical measures of adiposity and percentage fat loss: which measure most accurately reflects fat loss and what should we aim for? Arch Dis Child. 2007;92:399–403.PubMedPubMedCentralCrossRef Hunt LP, Ford A, Sabin MA, Crowne EC, Shield JP. Clinical measures of adiposity and percentage fat loss: which measure most accurately reflects fat loss and what should we aim for? Arch Dis Child. 2007;92:399–403.PubMedPubMedCentralCrossRef
210.
go back to reference Finne E, Reinehr T, Schaefer A, Winkel K, Kolip P. Changes in self-reported and parent-reported health-quality of life in overweight children and adolescents participating in an outpatient training: findings from a 12-month follow-up study. Health Qual Life Outcomes. 2013;11:1.PubMedPubMedCentralCrossRef Finne E, Reinehr T, Schaefer A, Winkel K, Kolip P. Changes in self-reported and parent-reported health-quality of life in overweight children and adolescents participating in an outpatient training: findings from a 12-month follow-up study. Health Qual Life Outcomes. 2013;11:1.PubMedPubMedCentralCrossRef
211.
212.
go back to reference Oude LH. Interventions for treating obesity in children. Cochrane Database Sys Rev. 2009;1:CD0001872. Oude LH. Interventions for treating obesity in children. Cochrane Database Sys Rev. 2009;1:CD0001872.
213.
go back to reference Reinehr T, Kleber M, Toschke AM. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis. 2009;207:174–80.PubMedCrossRef Reinehr T, Kleber M, Toschke AM. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis. 2009;207:174–80.PubMedCrossRef
214.
go back to reference Reinher T, Widhalm K, l'Allemand D, Wiegand S, Wabitsch M, Holl RW. Two year follow-up in 21.784 overweight children and adolescents with lifestyle intervention. Obesity. 2009;17:1196–9. Reinher T, Widhalm K, l'Allemand D, Wiegand S, Wabitsch M, Holl RW. Two year follow-up in 21.784 overweight children and adolescents with lifestyle intervention. Obesity. 2009;17:1196–9.
215.
go back to reference Fairburn CG, Welch SL, Doll HA, Davies BA, O'Connor ME. Risk factors for bulimia nervosa. A community-based case-control study. Arch Gen Psychiatry. 1997;54:509–17.PubMedCrossRef Fairburn CG, Welch SL, Doll HA, Davies BA, O'Connor ME. Risk factors for bulimia nervosa. A community-based case-control study. Arch Gen Psychiatry. 1997;54:509–17.PubMedCrossRef
216.
go back to reference Fairburn CG, Doll HA, Welch SL, Hay PJ, Davies BA, O'Connor ME. Risk factors for binge eating disorder: a community-based, case-control study. Arch Gen Psychiatry. 1998;55:425–32.PubMedCrossRef Fairburn CG, Doll HA, Welch SL, Hay PJ, Davies BA, O'Connor ME. Risk factors for binge eating disorder: a community-based, case-control study. Arch Gen Psychiatry. 1998;55:425–32.PubMedCrossRef
218.
go back to reference Swenne I. Influence of premorbid BMI on clinical characteristics at presentation of adolescent girls with eating disorders. BMC Psychiatry. 2016;16:81.PubMedPubMedCentralCrossRef Swenne I. Influence of premorbid BMI on clinical characteristics at presentation of adolescent girls with eating disorders. BMC Psychiatry. 2016;16:81.PubMedPubMedCentralCrossRef
219.
go back to reference Lebow J, Sim LA, Kransdorf LN. Prevalence of a history of overweight and obesity in adolescents with restrictive eating disorders. J Adolesc Health. 2015;56:19–24.PubMedCrossRef Lebow J, Sim LA, Kransdorf LN. Prevalence of a history of overweight and obesity in adolescents with restrictive eating disorders. J Adolesc Health. 2015;56:19–24.PubMedCrossRef
220.
go back to reference Golden NH, Schneider M, Wood C, AAP Commitee on nutrition. Preventing obesity and eating disorders in adolescents. Pediatrics. 2016;138:e20161649.PubMedCrossRef Golden NH, Schneider M, Wood C, AAP Commitee on nutrition. Preventing obesity and eating disorders in adolescents. Pediatrics. 2016;138:e20161649.PubMedCrossRef
221.
go back to reference Sim LA, Lebow J, Billings M. Eating disorders in adolescents with a history of obesity. Pediatrics. 2013;132:e1026–30.PubMedCrossRef Sim LA, Lebow J, Billings M. Eating disorders in adolescents with a history of obesity. Pediatrics. 2013;132:e1026–30.PubMedCrossRef
222.
go back to reference Speiser PW, Rudolph MC, Anhalt H, et al. Childhood obesity. J Clin Endocrinol Metab. 2005;90:1871–87.PubMedCrossRef Speiser PW, Rudolph MC, Anhalt H, et al. Childhood obesity. J Clin Endocrinol Metab. 2005;90:1871–87.PubMedCrossRef
223.
go back to reference August GP, Caprio S, Fennoy I, et al. Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab. 2008;93:4576–99.PubMedPubMedCentralCrossRef August GP, Caprio S, Fennoy I, et al. Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab. 2008;93:4576–99.PubMedPubMedCentralCrossRef
224.
go back to reference Lau DC, Douketis JD, Morrison KM, et al. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. CMAJ. 2007;176:S1–13.PubMedPubMedCentralCrossRef Lau DC, Douketis JD, Morrison KM, et al. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. CMAJ. 2007;176:S1–13.PubMedPubMedCentralCrossRef
225.
go back to reference National Health and Medical Research Council. Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia. Melbourne: National Health and Medical Research Council; 2013. National Health and Medical Research Council. Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia. Melbourne: National Health and Medical Research Council; 2013.
226.
go back to reference Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA. Pharmacotherapy for childhood obesity: present and future. J Obes. 2013;37:1–15.CrossRef Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA. Pharmacotherapy for childhood obesity: present and future. J Obes. 2013;37:1–15.CrossRef
227.
go back to reference Padwal R, Li SK, Lau DC. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003;27:1437–46.PubMedCrossRef Padwal R, Li SK, Lau DC. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003;27:1437–46.PubMedCrossRef
228.
go back to reference Franz MJ, VanWormer JJ, Crain AL, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107:1755–67.PubMedCrossRef Franz MJ, VanWormer JJ, Crain AL, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107:1755–67.PubMedCrossRef
229.
go back to reference Iughetti L, Berri R, China MC, Predieri B. Current and future drugs for appetite regulation and obesity treatment. Recent Pat Endocr, Metab Immune Drug Discovery. 2009;3:102–28.CrossRef Iughetti L, Berri R, China MC, Predieri B. Current and future drugs for appetite regulation and obesity treatment. Recent Pat Endocr, Metab Immune Drug Discovery. 2009;3:102–28.CrossRef
230.
go back to reference Iughetti L, China MC, Berri R, Predieri B. Pharmacological treatment of obesity in children and adolescent: present and future. J Obes. 2011;2011:928165.PubMedCrossRef Iughetti L, China MC, Berri R, Predieri B. Pharmacological treatment of obesity in children and adolescent: present and future. J Obes. 2011;2011:928165.PubMedCrossRef
231.
go back to reference Norgren S, Danielsson P, Jurold R, Lötborn M, Marcus C. Orlistat treatment in obese prepubertal children: a pilot study. Acta Paediatr. 2003;92:566–70. Norgren S, Danielsson P, Jurold R, Lötborn M, Marcus C. Orlistat treatment in obese prepubertal children: a pilot study. Acta Paediatr. 2003;92:566–70.
232.
go back to reference McDuffie JR, Calis KA, Uwaifo GI, et al. Efficacy of orlistat as adjunct to behavioral treatment in overweight African and Caucasian adolescents with obesity-related co-morbid conditions. J Pediatr Endocrinol Metab. 2004;17:307–19.PubMedPubMedCentralCrossRef McDuffie JR, Calis KA, Uwaifo GI, et al. Efficacy of orlistat as adjunct to behavioral treatment in overweight African and Caucasian adolescents with obesity-related co-morbid conditions. J Pediatr Endocrinol Metab. 2004;17:307–19.PubMedPubMedCentralCrossRef
233.
go back to reference Chanoine JP, Hampl S, Jensen C, et al. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293:2873–83.PubMedCrossRef Chanoine JP, Hampl S, Jensen C, et al. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293:2873–83.PubMedCrossRef
234.
go back to reference Zhi J, Moore R, Kanitra L. The effect of short-term (21-day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J Am Coll Nutr. 2003;22:357–62.PubMedCrossRef Zhi J, Moore R, Kanitra L. The effect of short-term (21-day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J Am Coll Nutr. 2003;22:357–62.PubMedCrossRef
235.
go back to reference Michalsky M, Reichard K, Inge T, Pratt J, Lenders C. American Society for Metabolic and Bariatric Surgery: ASMBS pediatric committee best practice guidelines. Surg Obes Relat Dis. 2012;8:1–7.PubMedCrossRef Michalsky M, Reichard K, Inge T, Pratt J, Lenders C. American Society for Metabolic and Bariatric Surgery: ASMBS pediatric committee best practice guidelines. Surg Obes Relat Dis. 2012;8:1–7.PubMedCrossRef
236.
go back to reference Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24:42–55.PubMedCrossRef Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24:42–55.PubMedCrossRef
237.
go back to reference Nobili V, Vajro P, Dezsofi A, et al. Indications and limitations of bariatric intervention in severely obese children and adolescents with and without nonalcoholic steatohepatitis: ESPGHAN hepatology committee position statement. J Pediatr Gastroenterol Nutr. 2015;60:550–61.PubMedCrossRef Nobili V, Vajro P, Dezsofi A, et al. Indications and limitations of bariatric intervention in severely obese children and adolescents with and without nonalcoholic steatohepatitis: ESPGHAN hepatology committee position statement. J Pediatr Gastroenterol Nutr. 2015;60:550–61.PubMedCrossRef
238.
go back to reference Thakkar RK, Michalsky MP. Update on bariatric surgery in adolescence. Curr Opin Pediatr. 2015;27:370–6.PubMedCrossRef Thakkar RK, Michalsky MP. Update on bariatric surgery in adolescence. Curr Opin Pediatr. 2015;27:370–6.PubMedCrossRef
239.
go back to reference Black JA, White B, Viner RM, Simmons RK. Bariatric surgery for obese children and adolescents: a systematic review and meta-analysis. Obesity Rev. 2013;14:634–44.CrossRef Black JA, White B, Viner RM, Simmons RK. Bariatric surgery for obese children and adolescents: a systematic review and meta-analysis. Obesity Rev. 2013;14:634–44.CrossRef
240.
go back to reference Hofman B. Bariatric surgery for obese children and adolescents: a review of the moral challenges. BMC Medical Ethics. 2013;14:18.CrossRef Hofman B. Bariatric surgery for obese children and adolescents: a review of the moral challenges. BMC Medical Ethics. 2013;14:18.CrossRef
241.
go back to reference Brei MN, Mudd S. Current guidelines for weight loss surgery in adolescents: a review of the literature. J Pediatr Health Care. 2014;28:288–94.PubMedCrossRef Brei MN, Mudd S. Current guidelines for weight loss surgery in adolescents: a review of the literature. J Pediatr Health Care. 2014;28:288–94.PubMedCrossRef
242.
go back to reference Ells LJ, Mead E, Atkinson G, et al. Surgery for the treatment of obesity in children and adolescents. Cochrane Database Syst Rev. 2015;6:CD011740. Ells LJ, Mead E, Atkinson G, et al. Surgery for the treatment of obesity in children and adolescents. Cochrane Database Syst Rev. 2015;6:CD011740.
243.
go back to reference Olbers T, Gronowitz E, Werling M, et al. Two-year outcome of laparoscopic roux-en-Y gastric bypass in adolescents with severe obesity: results from a Swedish Nationwide study (AMOS). Int J Obes. 2012;36:1388–95.CrossRef Olbers T, Gronowitz E, Werling M, et al. Two-year outcome of laparoscopic roux-en-Y gastric bypass in adolescents with severe obesity: results from a Swedish Nationwide study (AMOS). Int J Obes. 2012;36:1388–95.CrossRef
244.
go back to reference Alqahtani AR, Antonisamy B, Alamri H, Elahmedi M, Zimmerman VA. Laparoscopic sleeve gastrectomy in 108 obese children and adolescents aged 5 to 21 years. Ann Surg. 2012;256:266–73.PubMedCrossRef Alqahtani AR, Antonisamy B, Alamri H, Elahmedi M, Zimmerman VA. Laparoscopic sleeve gastrectomy in 108 obese children and adolescents aged 5 to 21 years. Ann Surg. 2012;256:266–73.PubMedCrossRef
245.
go back to reference Lennerz BS, Wabitsch M, Lippert H, et al. Bariatric surgery in adolescents and young adults--safety and effectiveness in a cohort of 345 patients. Int J Obes. 2014;38:334–40.CrossRef Lennerz BS, Wabitsch M, Lippert H, et al. Bariatric surgery in adolescents and young adults--safety and effectiveness in a cohort of 345 patients. Int J Obes. 2014;38:334–40.CrossRef
246.
go back to reference Alqahtani A, Elahmedi M, Qahtani AR. Laparoscopic sleeve gastrectomy in children younger than 14 years: refuting the concerns. Ann Surg. 2016;263:312–9.PubMedCrossRef Alqahtani A, Elahmedi M, Qahtani AR. Laparoscopic sleeve gastrectomy in children younger than 14 years: refuting the concerns. Ann Surg. 2016;263:312–9.PubMedCrossRef
247.
go back to reference Inge TH, Courcoulas AP, Jenkins TM, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374:113–23.PubMedCrossRef Inge TH, Courcoulas AP, Jenkins TM, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374:113–23.PubMedCrossRef
248.
go back to reference Paulus GF, de Vaan LE, Verdam FJ, Bouvy ND, Ambergen TA, van Heurn LW. Bariatric surgery in morbidly obese adolescents: a systematic review and meta-analysis. Obes Surg. 2015;25:860–78.PubMedPubMedCentralCrossRef Paulus GF, de Vaan LE, Verdam FJ, Bouvy ND, Ambergen TA, van Heurn LW. Bariatric surgery in morbidly obese adolescents: a systematic review and meta-analysis. Obes Surg. 2015;25:860–78.PubMedPubMedCentralCrossRef
249.
go back to reference Beamish AJ, Olbers T. Bariatric and metabolic surgery in adolescents: a path to decrease adult cardiovascular mortality. Curr Atheroscler Rep. 2015;17:53.PubMedCrossRef Beamish AJ, Olbers T. Bariatric and metabolic surgery in adolescents: a path to decrease adult cardiovascular mortality. Curr Atheroscler Rep. 2015;17:53.PubMedCrossRef
250.
go back to reference Manco M, Mosca A, De Peppo F, et al. The benefit of sleeve gastrectomy in obese adolescents on nonalcoholic steatohepatitis and hepatic fibrosis. J Pediatr. 2016;180:31–7.PubMedCrossRef Manco M, Mosca A, De Peppo F, et al. The benefit of sleeve gastrectomy in obese adolescents on nonalcoholic steatohepatitis and hepatic fibrosis. J Pediatr. 2016;180:31–7.PubMedCrossRef
251.
go back to reference Dietz WH, Baur LA, Hall K, et al. Management of obesity: improvement of health-care training and systems for prevention and care. Lancet. 2015;385:2521–33.PubMedCrossRef Dietz WH, Baur LA, Hall K, et al. Management of obesity: improvement of health-care training and systems for prevention and care. Lancet. 2015;385:2521–33.PubMedCrossRef
252.
go back to reference Fitch A, Fox C, Bauerly K, et al. Prevention and management of obesity for children and adolescents. Bloomington: Institute for Clinical Systems Improvement (ICSI); 2013. Fitch A, Fox C, Bauerly K, et al. Prevention and management of obesity for children and adolescents. Bloomington: Institute for Clinical Systems Improvement (ICSI); 2013.
253.
go back to reference National Clinical Guideline Centre (UK). Obesity: identification, assessment and management of overweight and obesity in children, young people and adults: partial update of CG43. In: NICE clinical guidelines, vol. 189. London: National Institute for Health and Care Excellence; 2014. National Clinical Guideline Centre (UK). Obesity: identification, assessment and management of overweight and obesity in children, young people and adults: partial update of CG43. In: NICE clinical guidelines, vol. 189. London: National Institute for Health and Care Excellence; 2014.
254.
go back to reference Ebbeling CB, Antonelli RC. Primary care interventions for pediatric obesity: need for an integrated approach. Pediatrics. 2015;135:757–8.PubMedCrossRef Ebbeling CB, Antonelli RC. Primary care interventions for pediatric obesity: need for an integrated approach. Pediatrics. 2015;135:757–8.PubMedCrossRef
255.
go back to reference Tuah NA, Amiel C, Qureshi S, Car J, Kaur B, Majeed A. Transtheoretical model for dietary and physical exercise modification in weight loss management for overweight and obese adults. Cochrane Database Syst Rev. 2011;10:CD008066. Tuah NA, Amiel C, Qureshi S, Car J, Kaur B, Majeed A. Transtheoretical model for dietary and physical exercise modification in weight loss management for overweight and obese adults. Cochrane Database Syst Rev. 2011;10:CD008066.
256.
go back to reference Borrello M, Pietrabissa G, Ceccarini M, Manzoni GM, Castelnuovo G. Motivational interviewing in childhood obesity treatment. Front Psychol. 2015;6:1732.PubMedPubMedCentralCrossRef Borrello M, Pietrabissa G, Ceccarini M, Manzoni GM, Castelnuovo G. Motivational interviewing in childhood obesity treatment. Front Psychol. 2015;6:1732.PubMedPubMedCentralCrossRef
257.
258.
go back to reference Resnicow K, McMaster F, Bocian A, et al. Motivational interviewing and dietary counseling for obesity in primary care: an RCT. Pediatrics. 2015;135:649–57.PubMedPubMedCentralCrossRef Resnicow K, McMaster F, Bocian A, et al. Motivational interviewing and dietary counseling for obesity in primary care: an RCT. Pediatrics. 2015;135:649–57.PubMedPubMedCentralCrossRef
259.
go back to reference Sargent GM, Pilotto LS, Baur LA. Components of primary care interventions to treat childhood overweight and obesity: a systematic review of effect. Obes Rev. 2011;12:e219–35.PubMedCrossRef Sargent GM, Pilotto LS, Baur LA. Components of primary care interventions to treat childhood overweight and obesity: a systematic review of effect. Obes Rev. 2011;12:e219–35.PubMedCrossRef
260.
go back to reference Daniels SR, Hassink SG. Committee in Nutrition. The role of the pediatrician in primary prevention of obesity. Pediatrics. 2015;136:e275–92.PubMedCrossRef Daniels SR, Hassink SG. Committee in Nutrition. The role of the pediatrician in primary prevention of obesity. Pediatrics. 2015;136:e275–92.PubMedCrossRef
261.
go back to reference Sim LA, Lebow J, Wang Z, Koball A, Murad MH. Brief primary care obesity interventions: a meta-analysis. Pediatrics. 2016;138:e20160149.PubMedCrossRef Sim LA, Lebow J, Wang Z, Koball A, Murad MH. Brief primary care obesity interventions: a meta-analysis. Pediatrics. 2016;138:e20160149.PubMedCrossRef
262.
go back to reference Mitchell TB, Amaro CM, Steele RG. Pediatric weight management interventions in primary care settings: a meta-analysis. Health Psychol. 2016;35:704–13.CrossRef Mitchell TB, Amaro CM, Steele RG. Pediatric weight management interventions in primary care settings: a meta-analysis. Health Psychol. 2016;35:704–13.CrossRef
263.
go back to reference Seburg EM, Olson-Bullis BA, Bredeson DM, Hayes MG, Sherwood NE. A review of primary care-based childhood obesity prevention and treatment interventions. Curr Obes Rep. 2015;4:157–73.PubMedPubMedCentralCrossRef Seburg EM, Olson-Bullis BA, Bredeson DM, Hayes MG, Sherwood NE. A review of primary care-based childhood obesity prevention and treatment interventions. Curr Obes Rep. 2015;4:157–73.PubMedPubMedCentralCrossRef
264.
go back to reference Bhuyan SS, Chandak A, Smith P, Carlton EL, Duncan K, Gentry D. Integration of public health and primary care: a systematic review of the current literature in primary care physician mediated childhood obesity interventions. Obes Res Clin Pract. 2015;9:539–52.PubMedCrossRef Bhuyan SS, Chandak A, Smith P, Carlton EL, Duncan K, Gentry D. Integration of public health and primary care: a systematic review of the current literature in primary care physician mediated childhood obesity interventions. Obes Res Clin Pract. 2015;9:539–52.PubMedCrossRef
266.
go back to reference Viner RM, White B, Barrett T, et al. Assessment of childhood obesity in secondary care: OSCA consensus statement. Arch Dis Child Educ Pract Ed. 2012;97:98–105.PubMedCrossRef Viner RM, White B, Barrett T, et al. Assessment of childhood obesity in secondary care: OSCA consensus statement. Arch Dis Child Educ Pract Ed. 2012;97:98–105.PubMedCrossRef
267.
go back to reference Donini LM, Cuzzolaro M, Spera G, et al. Consensus. Obesity and eating disorders. Indications for the different levels of care. An Italian expert consensus document. Eating Weight Disord. 2010;15:1–31.CrossRef Donini LM, Cuzzolaro M, Spera G, et al. Consensus. Obesity and eating disorders. Indications for the different levels of care. An Italian expert consensus document. Eating Weight Disord. 2010;15:1–31.CrossRef
268.
go back to reference Ahnert J, Löffler S, Müller J, Lukasczik M, Brüggemann S, Vogel H. Paediatric rehabilitation treatment standards: a method for quality assurance in Germany. J Public Health Res. 2014;3:275.PubMedPubMedCentralCrossRef Ahnert J, Löffler S, Müller J, Lukasczik M, Brüggemann S, Vogel H. Paediatric rehabilitation treatment standards: a method for quality assurance in Germany. J Public Health Res. 2014;3:275.PubMedPubMedCentralCrossRef
269.
go back to reference Rank M, Wilks DC, Foley L, et al. Health-related quality of life and physical activity in children and adolescents 2 years after an inpatient weight-loss program. J Pediatr. 2014;165:732–7.PubMedCrossRef Rank M, Wilks DC, Foley L, et al. Health-related quality of life and physical activity in children and adolescents 2 years after an inpatient weight-loss program. J Pediatr. 2014;165:732–7.PubMedCrossRef
270.
go back to reference Sauer H, Krumm A, Weimer K, et al. PreDictor research in obesity during medical care - weight loss in children and adolescents during an INpatient rehabilitation: rationale and design of the DROMLIN study. J Eat Disord. 2014;2:7.PubMedPubMedCentralCrossRef Sauer H, Krumm A, Weimer K, et al. PreDictor research in obesity during medical care - weight loss in children and adolescents during an INpatient rehabilitation: rationale and design of the DROMLIN study. J Eat Disord. 2014;2:7.PubMedPubMedCentralCrossRef
271.
go back to reference Grugni G, Licenziati MR, Valerio G, et al. The rehabilitation of children and adolescents with severe or medically complicated obesity. An ISPED expert opinion document. Eat Weight Disord. 2017;22:3–12.PubMedCrossRef Grugni G, Licenziati MR, Valerio G, et al. The rehabilitation of children and adolescents with severe or medically complicated obesity. An ISPED expert opinion document. Eat Weight Disord. 2017;22:3–12.PubMedCrossRef
272.
go back to reference Rosen DS, Blum RW, Britto M, Sawyer SM, Siegel DM. Transition to adult health care for adolescents and young adults with chronic conditions: position paper of the Society for Adolescent Medicine. J Adolesc Health. 2003;33:309–11.PubMedCrossRef Rosen DS, Blum RW, Britto M, Sawyer SM, Siegel DM. Transition to adult health care for adolescents and young adults with chronic conditions: position paper of the Society for Adolescent Medicine. J Adolesc Health. 2003;33:309–11.PubMedCrossRef
273.
go back to reference Schwartz LA, Daniel LC, Brumley LD, Barakat LP, Wesley KM, Tuchman LK. Measures of readiness to transition to adult health care for youth with chronic physical health conditions: a systematic review and recommendations for measurement testing and development. J Pediatr Psychol. 2014;39:588–601.PubMedPubMedCentralCrossRef Schwartz LA, Daniel LC, Brumley LD, Barakat LP, Wesley KM, Tuchman LK. Measures of readiness to transition to adult health care for youth with chronic physical health conditions: a systematic review and recommendations for measurement testing and development. J Pediatr Psychol. 2014;39:588–601.PubMedPubMedCentralCrossRef
274.
go back to reference Campbell F, Biggs K, Aldiss SK, et al. Transition of care for adolescents from paediatric services to adult health services. Cochrane Database Syst Rev. 2016;4:CD009794.PubMed Campbell F, Biggs K, Aldiss SK, et al. Transition of care for adolescents from paediatric services to adult health services. Cochrane Database Syst Rev. 2016;4:CD009794.PubMed
275.
go back to reference Shrewsbury VA, Baur LA, Nguyen B, Steinbeck KS. Transition to adult care in adolescent obesity: a systematic review and why it is a neglected topic. Int J Obes. 2014;38:475–9.CrossRef Shrewsbury VA, Baur LA, Nguyen B, Steinbeck KS. Transition to adult care in adolescent obesity: a systematic review and why it is a neglected topic. Int J Obes. 2014;38:475–9.CrossRef
276.
go back to reference Bambra CL, Hillier FC, Moore HJ, Cairns-Nagi JM, Summerbell CD. Tackling inequalities in obesity: a protocol for a systematic review of the effectiveness of public health interventions at reducing socioeconomic inequalities in obesity among adults. Syst Rev. 2013;2:27.PubMedPubMedCentralCrossRef Bambra CL, Hillier FC, Moore HJ, Cairns-Nagi JM, Summerbell CD. Tackling inequalities in obesity: a protocol for a systematic review of the effectiveness of public health interventions at reducing socioeconomic inequalities in obesity among adults. Syst Rev. 2013;2:27.PubMedPubMedCentralCrossRef
277.
go back to reference Novak NL, Brownell KD. Role of policy and government in the obesity epidemic. Circulation. 2012;126:2345–52.PubMedCrossRef Novak NL, Brownell KD. Role of policy and government in the obesity epidemic. Circulation. 2012;126:2345–52.PubMedCrossRef
278.
go back to reference Farpour-Lambert NJ, Baker JL, Hassapidou M, et al. Childhood obesity is a chronic disease demanding specific health care - a position statement from the childhood obesity task force (COTF) of the European Association for the Study of obesity (EASO). Obes Facts. 2015;8:342–9.PubMedPubMedCentralCrossRef Farpour-Lambert NJ, Baker JL, Hassapidou M, et al. Childhood obesity is a chronic disease demanding specific health care - a position statement from the childhood obesity task force (COTF) of the European Association for the Study of obesity (EASO). Obes Facts. 2015;8:342–9.PubMedPubMedCentralCrossRef
279.
go back to reference The Regional Office for Europe of the World Health Organization. The challenge of obesity in the WHO European Region and the strategies for response. Summary. Branca F, Nikogosian H, Lobstein T, editors. World Health Organization; 2007. The Regional Office for Europe of the World Health Organization. The challenge of obesity in the WHO European Region and the strategies for response. Summary. Branca F, Nikogosian H, Lobstein T, editors. World Health Organization; 2007.
280.
go back to reference Kamath CC, Vickers KS, Ehrlich A, et al. Behavioral interventions to prevent childhood obesity: a systematic review and meta-analyses of randomized trials. J Clin Endocrinol Metab. 2008;93:4606–15.PubMedCrossRef Kamath CC, Vickers KS, Ehrlich A, et al. Behavioral interventions to prevent childhood obesity: a systematic review and meta-analyses of randomized trials. J Clin Endocrinol Metab. 2008;93:4606–15.PubMedCrossRef
281.
go back to reference Waters E, de Silva-Sanigorski A, Hall BJ, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2011;12:CD001871. Waters E, de Silva-Sanigorski A, Hall BJ, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2011;12:CD001871.
282.
go back to reference Gerards SM, Sleddens EF, Dagnelie PC, de Vries NK, Kremers SP. Interventions addressing general parenting to prevent or treat childhood obesity. Int J Pediatr Obes. 2011;6:e28–45.PubMedCrossRef Gerards SM, Sleddens EF, Dagnelie PC, de Vries NK, Kremers SP. Interventions addressing general parenting to prevent or treat childhood obesity. Int J Pediatr Obes. 2011;6:e28–45.PubMedCrossRef
283.
go back to reference Showell NN, Fawole O, Segal J, Wilson RF, et al. A systematic review of home-based childhood obesity prevention studies. Pediatrics. 2013;132:e193–200.PubMedPubMedCentralCrossRef Showell NN, Fawole O, Segal J, Wilson RF, et al. A systematic review of home-based childhood obesity prevention studies. Pediatrics. 2013;132:e193–200.PubMedPubMedCentralCrossRef
284.
go back to reference Golden H, Schneider M, Wood CAAP. Committee on nutrition. Preventing obesity and eating disorders in adolescents. Pediatrics. 2016;138:e20161649.PubMedCrossRef Golden H, Schneider M, Wood CAAP. Committee on nutrition. Preventing obesity and eating disorders in adolescents. Pediatrics. 2016;138:e20161649.PubMedCrossRef
287.
go back to reference Kaar JL, Crume T, Brinton JT, Bischoff KJ, McDuffie R, Dabelea D. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J Pediatr. 2014;165:509–15.PubMedPubMedCentralCrossRef Kaar JL, Crume T, Brinton JT, Bischoff KJ, McDuffie R, Dabelea D. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J Pediatr. 2014;165:509–15.PubMedPubMedCentralCrossRef
288.
go back to reference Mamun AA, Mannan M, Doi SA. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014;15:338–47.PubMedCrossRef Mamun AA, Mannan M, Doi SA. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014;15:338–47.PubMedCrossRef
290.
go back to reference Starling AP, Brinton JT, Glueck DH, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the healthy start study. Am J Clin Nutr. 2015;101:302–9.PubMedCrossRef Starling AP, Brinton JT, Glueck DH, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the healthy start study. Am J Clin Nutr. 2015;101:302–9.PubMedCrossRef
291.
go back to reference Hillier TA, Pedula KL, Vesco KK, Oshiro CE, Ogasawara KK. Impact of maternal glucose and gestational weight gain on child obesity over the first decade of life in normal birth weight infants. Matern Child Health J. 2016;20:1559–68.PubMedCrossRef Hillier TA, Pedula KL, Vesco KK, Oshiro CE, Ogasawara KK. Impact of maternal glucose and gestational weight gain on child obesity over the first decade of life in normal birth weight infants. Matern Child Health J. 2016;20:1559–68.PubMedCrossRef
292.
go back to reference Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines. Washington: National Academies Press; 2009. Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines. Washington: National Academies Press; 2009.
293.
go back to reference Mund M, Louwen F, Klingelhoefer D, Gerber A. Smoking and pregnancy--a review on the first major environmental risk factor of the unborn. Int J Environ Res Public Health. 2013;10:6485–99.PubMedPubMedCentralCrossRef Mund M, Louwen F, Klingelhoefer D, Gerber A. Smoking and pregnancy--a review on the first major environmental risk factor of the unborn. Int J Environ Res Public Health. 2013;10:6485–99.PubMedPubMedCentralCrossRef
294.
go back to reference Møller SE, Ajslev TA, Andersen CS, Dalgård C, Sørensen TI. Risk of childhood overweight after exposure to tobacco smoking in prenatal and early postnatal life. PLoS One. 2014;9:e109184.PubMedPubMedCentralCrossRef Møller SE, Ajslev TA, Andersen CS, Dalgård C, Sørensen TI. Risk of childhood overweight after exposure to tobacco smoking in prenatal and early postnatal life. PLoS One. 2014;9:e109184.PubMedPubMedCentralCrossRef
295.
go back to reference Baidal WJA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med. 2016;50:761–79.CrossRef Baidal WJA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med. 2016;50:761–79.CrossRef
296.
go back to reference Gale C, Logan KM, Santhakumaran S, Parkinson JRC, Hyde MJ, Modi N. Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95:656–69.PubMedCrossRef Gale C, Logan KM, Santhakumaran S, Parkinson JRC, Hyde MJ, Modi N. Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95:656–69.PubMedCrossRef
297.
298.
go back to reference Horta BL, de Mola CL, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure, and type-2 diabetes: systematic review and meta-analysis. Acta Paediatr Suppl. 2015;104:30–7.CrossRef Horta BL, de Mola CL, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure, and type-2 diabetes: systematic review and meta-analysis. Acta Paediatr Suppl. 2015;104:30–7.CrossRef
299.
go back to reference Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–90.PubMedCrossRef Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–90.PubMedCrossRef
300.
go back to reference Seach KA, Dharmage SC, Lowe AJ, Dixon JB. Delayed introduction of solid feeding reduces child overweight and obesity at 10 years. Int J Obes. 2010;34:1475–9.CrossRef Seach KA, Dharmage SC, Lowe AJ, Dixon JB. Delayed introduction of solid feeding reduces child overweight and obesity at 10 years. Int J Obes. 2010;34:1475–9.CrossRef
301.
go back to reference Huh SY, Rifas-Shiman SL, Taveras EM, et al. Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics. 2011;127:e544–51.PubMedPubMedCentralCrossRef Huh SY, Rifas-Shiman SL, Taveras EM, et al. Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics. 2011;127:e544–51.PubMedPubMedCentralCrossRef
302.
go back to reference Weng ST, Redsell SA, Swift JA, Yang M, Glazebrook CP. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012;97:1019–26.PubMedPubMedCentralCrossRef Weng ST, Redsell SA, Swift JA, Yang M, Glazebrook CP. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012;97:1019–26.PubMedPubMedCentralCrossRef
303.
go back to reference Pearce J, Taylor MA, Langley-Evans SC. Timing of the introduction of complementary feeding and risk of childhood obesity: a systematic review. Int J Obesity (Lond). 2013;37:1295–306.CrossRef Pearce J, Taylor MA, Langley-Evans SC. Timing of the introduction of complementary feeding and risk of childhood obesity: a systematic review. Int J Obesity (Lond). 2013;37:1295–306.CrossRef
304.
go back to reference Vail B, Prentice P, Dunger DB, Hughes IA, Acerini CL, Ong KK. Age at weaning and infant growth: primary analysis and systematic review. J Pediatr. 2015;167:317–24.PubMedPubMedCentralCrossRef Vail B, Prentice P, Dunger DB, Hughes IA, Acerini CL, Ong KK. Age at weaning and infant growth: primary analysis and systematic review. J Pediatr. 2015;167:317–24.PubMedPubMedCentralCrossRef
305.
go back to reference Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr. 2017;64:119–32.PubMedCrossRef Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr. 2017;64:119–32.PubMedCrossRef
306.
go back to reference Pearce J, Langley-Evans SC. The types of food introduced during complementary feeding and risk of childhood obesity: a systematic review. Int J Obes. 2013;37:477–85.CrossRef Pearce J, Langley-Evans SC. The types of food introduced during complementary feeding and risk of childhood obesity: a systematic review. Int J Obes. 2013;37:477–85.CrossRef
307.
go back to reference Patro-Golab B, Zalewski BM, Kouwenhoven SMP, et al. Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr. 2016;146:551–64.PubMedCrossRef Patro-Golab B, Zalewski BM, Kouwenhoven SMP, et al. Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr. 2016;146:551–64.PubMedCrossRef
308.
go back to reference Foterek K, Hilbig A, Kersting M, et al. Age and time trends in the diet of young children: results of the Donald study. Eur J Nutr. 2016;55:611–20.PubMedCrossRef Foterek K, Hilbig A, Kersting M, et al. Age and time trends in the diet of young children: results of the Donald study. Eur J Nutr. 2016;55:611–20.PubMedCrossRef
309.
go back to reference Voortman T, Braun KV, Kiefte-de Jong JC, et al. Protein intake in early childhood and body composition at age of 6 years: the generation R study. Int J Obes (London). 2016;40:1018–25.CrossRef Voortman T, Braun KV, Kiefte-de Jong JC, et al. Protein intake in early childhood and body composition at age of 6 years: the generation R study. Int J Obes (London). 2016;40:1018–25.CrossRef
310.
go back to reference Niinikoski H, Lagström H, Jokinen E, et al. Impact of repeated dietary counseling between infancy and 14 years of age on dietary intakes and serum lipids and lipoproteins the STRIP study. Circulation. 2007;116:1032–40.PubMedCrossRef Niinikoski H, Lagström H, Jokinen E, et al. Impact of repeated dietary counseling between infancy and 14 years of age on dietary intakes and serum lipids and lipoproteins the STRIP study. Circulation. 2007;116:1032–40.PubMedCrossRef
311.
go back to reference Pan L, Li R, Park S, Galuska DA, Sherry BL, Freedman DS. A longitudinal analysis of sugar-sweetened beverage intake in infancy and obesity at 6 years. Pediatrics. 2014;134(Suppl 1):S29–35.PubMedPubMedCentralCrossRef Pan L, Li R, Park S, Galuska DA, Sherry BL, Freedman DS. A longitudinal analysis of sugar-sweetened beverage intake in infancy and obesity at 6 years. Pediatrics. 2014;134(Suppl 1):S29–35.PubMedPubMedCentralCrossRef
312.
go back to reference Cameron SL, Heath LM, Taylor RW. How feasible is baby led weaning as an approach to infant feeding? A review of the evidence. Nutrients. 2012;2:1575–609.CrossRef Cameron SL, Heath LM, Taylor RW. How feasible is baby led weaning as an approach to infant feeding? A review of the evidence. Nutrients. 2012;2:1575–609.CrossRef
313.
go back to reference Daniels L, Heath AL, Williams SM, et al. Baby-led introduction to SolidS (BLISS) study: a randomised controlled trial of a baby-led approach to complementary feeding. BMC Pediatr. 2015;15:179.PubMedPubMedCentralCrossRef Daniels L, Heath AL, Williams SM, et al. Baby-led introduction to SolidS (BLISS) study: a randomised controlled trial of a baby-led approach to complementary feeding. BMC Pediatr. 2015;15:179.PubMedPubMedCentralCrossRef
314.
go back to reference Brown A, Lee MD. Early influences on child satiety-responsiveness: the role of weaning style. Pediatr Obes. 2015;10:57–66.PubMedCrossRef Brown A, Lee MD. Early influences on child satiety-responsiveness: the role of weaning style. Pediatr Obes. 2015;10:57–66.PubMedCrossRef
315.
go back to reference World Health Organization. Global strategy on diet, physical activity and health. What can be done to fight the childhood obesity epidemic? In: Consideration of the evidence on childhood obesity for the commission on ending childhood obesity: report of ad hoc working group on science and evidence for ending childhood obesity. Geneva: WHO; 2016. http://www.who.int/elena/en. World Health Organization. Global strategy on diet, physical activity and health. What can be done to fight the childhood obesity epidemic? In: Consideration of the evidence on childhood obesity for the commission on ending childhood obesity: report of ad hoc working group on science and evidence for ending childhood obesity. Geneva: WHO; 2016. http://​www.​who.​int/​elena/​en.
316.
go back to reference Casas R, Sacanella E, Urpí-Sardà M, et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J Nutr. 2016;146:1684–93.PubMedCrossRef Casas R, Sacanella E, Urpí-Sardà M, et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J Nutr. 2016;146:1684–93.PubMedCrossRef
318.
go back to reference French SA, Story M, Neumark-Sztainer FJA, Hannan P. Fast food restaurant use among adolescents: associations with nutrient intake, food choices and behavioral and psychological variables. Int J Ob Relat Metab Disord. 2001;25:1823–33.CrossRef French SA, Story M, Neumark-Sztainer FJA, Hannan P. Fast food restaurant use among adolescents: associations with nutrient intake, food choices and behavioral and psychological variables. Int J Ob Relat Metab Disord. 2001;25:1823–33.CrossRef
319.
go back to reference Cobb LK, Appel LJ, Franco M, Jones-Smith JC, Nur A, Anderson CA. The relationship of the local food environment with obesity: a systematic review of methods, study quality, and results. Obesity (Silver Spring). 2015;23:1331–44.CrossRef Cobb LK, Appel LJ, Franco M, Jones-Smith JC, Nur A, Anderson CA. The relationship of the local food environment with obesity: a systematic review of methods, study quality, and results. Obesity (Silver Spring). 2015;23:1331–44.CrossRef
320.
go back to reference Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes Rev. 2013;14:606–19.PubMedPubMedCentralCrossRef Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes Rev. 2013;14:606–19.PubMedPubMedCentralCrossRef
321.
go back to reference Bucher Della Torre S, Keller A, Laure Depeyre J, Kruseman M. Sugar-sweetened beverages and obesity risk in children and adolescents: a systematic analysis on how methodological quality may influence conclusions. J Acad Nutr Diet. 2016;116:638–59.PubMedCrossRef Bucher Della Torre S, Keller A, Laure Depeyre J, Kruseman M. Sugar-sweetened beverages and obesity risk in children and adolescents: a systematic analysis on how methodological quality may influence conclusions. J Acad Nutr Diet. 2016;116:638–59.PubMedCrossRef
322.
go back to reference Malik VS, Pan A, C Willett W, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr. 2013;98:1084–102.PubMedPubMedCentralCrossRef Malik VS, Pan A, C Willett W, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr. 2013;98:1084–102.PubMedPubMedCentralCrossRef
323.
go back to reference te Velde SJ, van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13(Suppl 1):56–74.PubMedCrossRef te Velde SJ, van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13(Suppl 1):56–74.PubMedCrossRef
324.
go back to reference Pate RR, O'Neill JR, Liese AD, et al. Factors associated with development of excessive fatness in children and adolescents: a review of prospective studies. Obes Rev. 2013;14:645–58.PubMedCrossRef Pate RR, O'Neill JR, Liese AD, et al. Factors associated with development of excessive fatness in children and adolescents: a review of prospective studies. Obes Rev. 2013;14:645–58.PubMedCrossRef
325.
go back to reference Parikh T, Stratton G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5-18 year olds. Sports Med. 2011;41:477–88.PubMedCrossRef Parikh T, Stratton G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5-18 year olds. Sports Med. 2011;41:477–88.PubMedCrossRef
326.
go back to reference Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32:1–11.CrossRef Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32:1–11.CrossRef
327.
go back to reference De Bock F, Genser B, Raat H, et al. A participatory physical activity intervention in preschools. Am J Prev Med. 2013;45:64–74.PubMedCrossRef De Bock F, Genser B, Raat H, et al. A participatory physical activity intervention in preschools. Am J Prev Med. 2013;45:64–74.PubMedCrossRef
328.
go back to reference Thompson DA, Christakis DA. The association between television viewing and irregular sleep schedules among children less than 3 years of age. Pediatrics. 2005;116:851–6.PubMedCrossRef Thompson DA, Christakis DA. The association between television viewing and irregular sleep schedules among children less than 3 years of age. Pediatrics. 2005;116:851–6.PubMedCrossRef
329.
go back to reference Council on Communications and Media, Brown A. Media use by children younger than 2 years. Pediatrics. 2011;128:1040–5.CrossRef Council on Communications and Media, Brown A. Media use by children younger than 2 years. Pediatrics. 2011;128:1040–5.CrossRef
330.
go back to reference Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act 2015. 2011;8:98.CrossRef Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act 2015. 2011;8:98.CrossRef
331.
go back to reference Fröberg A, Raustorp A. Objectively measured sedentary behaviour and cardio-metabolic risk in youth: a review of evidence. Eur J Pediatr. 2014;173:845–60.PubMedCrossRef Fröberg A, Raustorp A. Objectively measured sedentary behaviour and cardio-metabolic risk in youth: a review of evidence. Eur J Pediatr. 2014;173:845–60.PubMedCrossRef
332.
go back to reference Zhang G, Wu L, Zhou L, Lu W, Mao C. Television watching and risk of childhood obesity: a meta-analysis. Eur J Pub Health. 2016;26:13–8.CrossRef Zhang G, Wu L, Zhou L, Lu W, Mao C. Television watching and risk of childhood obesity: a meta-analysis. Eur J Pub Health. 2016;26:13–8.CrossRef
333.
go back to reference Schmidt ME, Haines J, O'Brien A, et al. Systematic review of effective strategies for reducing screen time among young children. Obesity (Silver Spring). 2012;20:1338–54.CrossRef Schmidt ME, Haines J, O'Brien A, et al. Systematic review of effective strategies for reducing screen time among young children. Obesity (Silver Spring). 2012;20:1338–54.CrossRef
334.
go back to reference Cauchi D, Glonti K, Petticrew M, Knai C. Environmental components of childhood obesity prevention interventions: an overview of systematic reviews. Obes Rev. 2016;17:1116–30.PubMedCrossRef Cauchi D, Glonti K, Petticrew M, Knai C. Environmental components of childhood obesity prevention interventions: an overview of systematic reviews. Obes Rev. 2016;17:1116–30.PubMedCrossRef
335.
go back to reference Benatti FB, Ried-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47:2053–61.PubMedCrossRef Benatti FB, Ried-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47:2053–61.PubMedCrossRef
336.
go back to reference Fisher A, Mc Donald LM, van CHN J, et al. Sleep and energy intake in early childhood. Int J Obes (Lond). 2014;38:926–9.CrossRef Fisher A, Mc Donald LM, van CHN J, et al. Sleep and energy intake in early childhood. Int J Obes (Lond). 2014;38:926–9.CrossRef
338.
go back to reference Fatima Y, Doi SA, Mamun AA. Longitudinal impact of sleep on overweight and obesity in children and adolescents: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2015;16:137–49.PubMedCrossRef Fatima Y, Doi SA, Mamun AA. Longitudinal impact of sleep on overweight and obesity in children and adolescents: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2015;16:137–49.PubMedCrossRef
339.
go back to reference Yoong SL, Chai LK, Williams CM, Wiggers J, Finch M, Wolfenden L. Systematic review and meta-analysis of interventions targeting sleep and their impact on child body mass index, diet, and physical activity. Obesity (Silver Spring). 2016;24:1140–7.CrossRef Yoong SL, Chai LK, Williams CM, Wiggers J, Finch M, Wolfenden L. Systematic review and meta-analysis of interventions targeting sleep and their impact on child body mass index, diet, and physical activity. Obesity (Silver Spring). 2016;24:1140–7.CrossRef
340.
go back to reference Paruthi S, Brooks LJ, D'Ambrosio C, et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of sleep medicine. J Clin Sleep Med. 2016;12:785–6.PubMedPubMedCentralCrossRef Paruthi S, Brooks LJ, D'Ambrosio C, et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of sleep medicine. J Clin Sleep Med. 2016;12:785–6.PubMedPubMedCentralCrossRef
341.
go back to reference Effective Health Care Program. Childhood obesity prevention programs: comparative effectiveness review and meta-analysis. Comparative effectiveness review number 115. Rockville: AHRQ Publication No. 13-EHC081-EF; 2013. Effective Health Care Program. Childhood obesity prevention programs: comparative effectiveness review and meta-analysis. Comparative effectiveness review number 115. Rockville: AHRQ Publication No. 13-EHC081-EF; 2013.
342.
Metadata
Title
Diagnosis, treatment and prevention of pediatric obesity: consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics
Authors
Giuliana Valerio
Claudio Maffeis
Giuseppe Saggese
Maria Amalia Ambruzzi
Antonio Balsamo
Simonetta Bellone
Marcello Bergamini
Sergio Bernasconi
Gianni Bona
Valeria Calcaterra
Teresa Canali
Margherita Caroli
Francesco Chiarelli
Nicola Corciulo
Antonino Crinò
Procolo Di Bonito
Violetta Di Pietrantonio
Mario Di Pietro
Anna Di Sessa
Antonella Diamanti
Mattia Doria
Danilo Fintini
Roberto Franceschi
Adriana Franzese
Marco Giussani
Graziano Grugni
Dario Iafusco
Lorenzo Iughetti
Adima Lamborghini
Maria Rosaria Licenziati
Raffaele Limauro
Giulio Maltoni
Melania Manco
Leonardo Marchesini Reggiani
Loredana Marcovecchio
Alberto Marsciani
Emanuele Miraglia del Giudice
Anita Morandi
Giuseppe Morino
Beatrice Moro
Valerio Nobili
Laura Perrone
Marina Picca
Angelo Pietrobelli
Francesco Privitera
Salvatore Purromuto
Letizia Ragusa
Roberta Ricotti
Francesca Santamaria
Chiara Sartori
Stefano Stilli
Maria Elisabeth Street
Rita Tanas
Giuliana Trifiró
Giuseppina Rosaria Umano
Andrea Vania
Elvira Verduci
Eugenio Zito
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2018
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-018-0525-6

Other articles of this Issue 1/2018

Italian Journal of Pediatrics 1/2018 Go to the issue