Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2018

Open Access 01-12-2018 | Original research

Haemodynamic outcomes during piston-based mechanical CPR with or without active decompression in a porcine model of cardiac arrest

Authors: Mikkel T. Steinberg, Jan-Aage Olsen, Morten Eriksen, Andres Neset, Per Andreas Norseng, Jo Kramer-Johansen, Bjarne Madsen Hardig, Lars Wik

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2018

Login to get access

Abstract

Background

Experimental active compression-decompression (ACD) CPR is associated with increased haemodynamic outcomes compared to standard mechanical chest compressions. Since no clinically available mechanical chest compression device is capable of ACD-CPR, we modified the LUCAS 2 (Physio-Control, Lund, Sweden) to deliver ACD-CPR, hypothesising it would improve haemodynamic outcomes compared with standard LUCAS CPR on pigs with cardiac arrest.

Methods

The modified LUCAS delivering 5 cm compressions with or without 2 cm active decompression above anatomical chest level was studied in a randomized crossover design on 19 Norwegian domestic pigs. VF was electrically induced and untreated for 2 min. Each pig received ACD-CPR and standard mechanical CPR in three 180-s. phases. We measured aortic, right atrial, coronary perfusion, intracranial and oesophageal pressure, cerebral and carotid blood flow and cardiac output. Two-sided paired samples t-test was used for continuous parametric data and Wilcoxon test for non-parametric data. P < 0.05 was considered significant.

Results

Due to injuries/device failure, the experimental protocol was completed in nine of 19 pigs. Cardiac output (l/min, median, (25, 75-percentiles): 1.5 (1.1, 1.7) vs. 1.1 (0.8, 1.5), p < 0.01), cerebral blood flow (AU, 297 vs. 253, mean difference: 44, 95% CI; 14–74, p = 0.01), and carotid blood flow (l/min, median, (25, 75-percentiles): 97 (70, 106) vs. 83 (57, 94), p < 0.01) were higher during ACD-CPR compared to standard mechanical CPR. Coronary perfusion pressure (CPP) trended towards higher in end decompression phase.

Conclusion

Cardiac output and brain blood flow improved with mechanical ACD-CPR and CPP trended towards higher during end-diastole compared to standard LUCAS CPR.
Literature
1.
go back to reference Halperin HR, Paradis N, Omato JP, Zviman M, Johnson J, Kern KB. Improved hemodynamics with a novel chest compression device in a porcine model of cardiac arrest. Circulation. 2002;106(19):538. Halperin HR, Paradis N, Omato JP, Zviman M, Johnson J, Kern KB. Improved hemodynamics with a novel chest compression device in a porcine model of cardiac arrest. Circulation. 2002;106(19):538.
2.
go back to reference Ward KR, Menegazzi JJ, Zelenak RR, Sullivan RJ, McSwain NE Jr. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest. Ann Emerg Med. 1993;22(4):669–74.CrossRefPubMed Ward KR, Menegazzi JJ, Zelenak RR, Sullivan RJ, McSwain NE Jr. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest. Ann Emerg Med. 1993;22(4):669–74.CrossRefPubMed
3.
go back to reference McDonald JL. Systolic and mean arterial pressures during manual and mechanical CPR in humans. Ann Emerg Med. 1982;11(6):292–5.CrossRefPubMed McDonald JL. Systolic and mean arterial pressures during manual and mechanical CPR in humans. Ann Emerg Med. 1982;11(6):292–5.CrossRefPubMed
4.
go back to reference Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2014;385(9972):947–55.CrossRefPubMed Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2014;385(9972):947–55.CrossRefPubMed
5.
go back to reference Wik L, Olsen JA, Persse D, Sterz F, Lozano M Jr, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.CrossRefPubMed Wik L, Olsen JA, Persse D, Sterz F, Lozano M Jr, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.CrossRefPubMed
6.
go back to reference Rubertsson S, Lindgren E, Smekal D, Ostlund O, Silfverstolpe J, Lichtveld RA, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311(1):53–61.CrossRefPubMed Rubertsson S, Lindgren E, Smekal D, Ostlund O, Silfverstolpe J, Lichtveld RA, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311(1):53–61.CrossRefPubMed
7.
go back to reference Wik L, Naess PA, Ilebekk A, Steen PA. Simultaneous active compression-decompression and abdominal binding increase carotid blood flow additively during cardiopulmonary resuscitation (CPR) in pigs. Resuscitation. 1994;28(1):55–64.CrossRefPubMed Wik L, Naess PA, Ilebekk A, Steen PA. Simultaneous active compression-decompression and abdominal binding increase carotid blood flow additively during cardiopulmonary resuscitation (CPR) in pigs. Resuscitation. 1994;28(1):55–64.CrossRefPubMed
8.
go back to reference Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation. 1996;31(1):45–57.CrossRefPubMed Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation. 1996;31(1):45–57.CrossRefPubMed
9.
go back to reference Cohen TJ, Tucker KJ, Redberg RF, Lurie KG, Chin MC, Dutton JP, et al. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Am Heart J. 1992;124(5):1145–50.CrossRefPubMed Cohen TJ, Tucker KJ, Redberg RF, Lurie KG, Chin MC, Dutton JP, et al. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Am Heart J. 1992;124(5):1145–50.CrossRefPubMed
10.
go back to reference Lindner KH, Pfenninger EG, Lurie KG, Schurmann W, Lindner IM, Ahnefeld FW. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation. 1993;88(3):1254–63.CrossRefPubMed Lindner KH, Pfenninger EG, Lurie KG, Schurmann W, Lindner IM, Ahnefeld FW. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation. 1993;88(3):1254–63.CrossRefPubMed
11.
go back to reference Tucker KJ, Khan JH, Savitt MA. Active compression-decompression resuscitation: effects on pulmonary ventilation. Resuscitation. 1993;26(2):125–31.CrossRefPubMed Tucker KJ, Khan JH, Savitt MA. Active compression-decompression resuscitation: effects on pulmonary ventilation. Resuscitation. 1993;26(2):125–31.CrossRefPubMed
12.
go back to reference Chang MW, Coffeen P, Lurie KG, Shultz J, Bache RJ, White CW. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest. 1994;106(4):1250–9.CrossRefPubMed Chang MW, Coffeen P, Lurie KG, Shultz J, Bache RJ, White CW. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest. 1994;106(4):1250–9.CrossRefPubMed
13.
go back to reference Cohen TJ, Tucker KJ, Lurie KG, Redberg RF, Dutton JP, Dwyer KA, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary resuscitation working group. JAMA. 1992;267(21):2916–23.CrossRefPubMed Cohen TJ, Tucker KJ, Lurie KG, Redberg RF, Dutton JP, Dwyer KA, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary resuscitation working group. JAMA. 1992;267(21):2916–23.CrossRefPubMed
14.
15.
go back to reference Tucker KJ, Redberg RF, Schiller NB, Cohen TJ. Active compression-decompression resuscitation: analysis of transmitral flow and left ventricular volume by transesophageal echocardiography in humans. Cardiopulmonary resuscitation working group. J Am Coll Cardiol. 1993;22(5):1485–93.CrossRefPubMed Tucker KJ, Redberg RF, Schiller NB, Cohen TJ. Active compression-decompression resuscitation: analysis of transmitral flow and left ventricular volume by transesophageal echocardiography in humans. Cardiopulmonary resuscitation working group. J Am Coll Cardiol. 1993;22(5):1485–93.CrossRefPubMed
16.
go back to reference Shultz JJ, Coffeen P, Sweeney M, Detloff B, Kehler C, Pineda E, et al. Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation. 1994;89(2):684–93.CrossRefPubMed Shultz JJ, Coffeen P, Sweeney M, Detloff B, Kehler C, Pineda E, et al. Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation. 1994;89(2):684–93.CrossRefPubMed
17.
go back to reference Orliaguet GA, Carli PA, Rozenberg A, Janniere D, Sauval P, Delpech P. End-tidal carbon dioxide during out-of-hospital cardiac arrest resuscitation: comparison of active compression-decompression and standard CPR. Ann Emerg Med. 1995;25(1):48–51.CrossRefPubMed Orliaguet GA, Carli PA, Rozenberg A, Janniere D, Sauval P, Delpech P. End-tidal carbon dioxide during out-of-hospital cardiac arrest resuscitation: comparison of active compression-decompression and standard CPR. Ann Emerg Med. 1995;25(1):48–51.CrossRefPubMed
18.
go back to reference Skogvoll E, Wik L. Active compression-decompression cardiopulmonary resuscitation (ACD-CPR) compared with standard CPR in a manikin model--decompression force, compression rate, depth and duration. Resuscitation. 1997;34(1):11–6.CrossRefPubMed Skogvoll E, Wik L. Active compression-decompression cardiopulmonary resuscitation (ACD-CPR) compared with standard CPR in a manikin model--decompression force, compression rate, depth and duration. Resuscitation. 1997;34(1):11–6.CrossRefPubMed
19.
go back to reference Sunde K, Wik L, Steen PA. Quality of mechanical, manual standard and active compression-decompression CPR on the arrest site and during transport in a manikin model. Resuscitation. 1997;34(3):235–42.CrossRefPubMed Sunde K, Wik L, Steen PA. Quality of mechanical, manual standard and active compression-decompression CPR on the arrest site and during transport in a manikin model. Resuscitation. 1997;34(3):235–42.CrossRefPubMed
20.
go back to reference Wang CH, Tsai MS, Chang WT, Huang CH, Ma MH, Chen WJ, et al. Active compression-decompression resuscitation and impedance threshold device for out-of-hospital cardiac arrest: a systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):889–96.CrossRefPubMed Wang CH, Tsai MS, Chang WT, Huang CH, Ma MH, Chen WJ, et al. Active compression-decompression resuscitation and impedance threshold device for out-of-hospital cardiac arrest: a systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):889–96.CrossRefPubMed
21.
go back to reference Lafuente-Lafuente C, Melero-Bascones M. Active chest compression-decompression for cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2013;(9):1465–1858. Lafuente-Lafuente C, Melero-Bascones M. Active chest compression-decompression for cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2013;(9):1465–1858.
22.
go back to reference Cabrini L, Beccaria P, Landoni G, Biondi-Zoccai GG, Sheiban I, Cristofolini M, et al. Impact of impedance threshold devices on cardiopulmonary resuscitation: a systematic review and meta-analysis of randomized controlled studies. Crit Care Med. 2008;36(5):1625–32.CrossRefPubMed Cabrini L, Beccaria P, Landoni G, Biondi-Zoccai GG, Sheiban I, Cristofolini M, et al. Impact of impedance threshold devices on cardiopulmonary resuscitation: a systematic review and meta-analysis of randomized controlled studies. Crit Care Med. 2008;36(5):1625–32.CrossRefPubMed
23.
go back to reference Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, et al. Comparative effectiveness of standard CPR versus active compression decompression CPR with augmentation of negative intrathoracic pressure for treatment of out-of-hospital cardiac arrest: results from a randomized prospective study. Lancet. 2011;377(9762):301–11.CrossRefPubMedPubMedCentral Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, et al. Comparative effectiveness of standard CPR versus active compression decompression CPR with augmentation of negative intrathoracic pressure for treatment of out-of-hospital cardiac arrest: results from a randomized prospective study. Lancet. 2011;377(9762):301–11.CrossRefPubMedPubMedCentral
24.
go back to reference Mosher P, Ross J Jr, McFate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res. 1964;14:250–9.CrossRefPubMed Mosher P, Ross J Jr, McFate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res. 1964;14:250–9.CrossRefPubMed
25.
go back to reference Ditchey RV, Winkler JV, Rhodes CA. Relative lack of coronary blood flow during closed-chest resuscitation in dogs. Circulation. 1982;66(2):297–302.CrossRefPubMed Ditchey RV, Winkler JV, Rhodes CA. Relative lack of coronary blood flow during closed-chest resuscitation in dogs. Circulation. 1982;66(2):297–302.CrossRefPubMed
26.
go back to reference Langhelle A, Stromme T, Sunde K, Wik L, Nicolaysen G, Steen PA. Inspiratory impedance threshold valve during CPR. Resuscitation. 2002;52(1):39–48.CrossRefPubMed Langhelle A, Stromme T, Sunde K, Wik L, Nicolaysen G, Steen PA. Inspiratory impedance threshold valve during CPR. Resuscitation. 2002;52(1):39–48.CrossRefPubMed
27.
go back to reference Shultz JJ, Mianulli MJ, Gisch TM, Coffeen PR, Haidet GC, Lurie KG. Comparison of exertion required to perform standard and active compression-decompression cardiopulmonary resuscitation. Resuscitation. 1995;29(1):23–31.CrossRefPubMed Shultz JJ, Mianulli MJ, Gisch TM, Coffeen PR, Haidet GC, Lurie KG. Comparison of exertion required to perform standard and active compression-decompression cardiopulmonary resuscitation. Resuscitation. 1995;29(1):23–31.CrossRefPubMed
28.
go back to reference R N. Lehrbuch der Anatomie der Haustiere Band III: Kreislaufsystem, Haut und Hautorgane: Verlag Paul Parey; 1976. p. 17–18. R N. Lehrbuch der Anatomie der Haustiere Band III: Kreislaufsystem, Haut und Hautorgane: Verlag Paul Parey; 1976. p. 17–18.
Metadata
Title
Haemodynamic outcomes during piston-based mechanical CPR with or without active decompression in a porcine model of cardiac arrest
Authors
Mikkel T. Steinberg
Jan-Aage Olsen
Morten Eriksen
Andres Neset
Per Andreas Norseng
Jo Kramer-Johansen
Bjarne Madsen Hardig
Lars Wik
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-018-0496-z

Other articles of this Issue 1/2018

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2018 Go to the issue