Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016

Open Access 01-12-2016 | Original research

Four ways to ventilate during cardiopulmonary resuscitation in a porcine model: a randomized study

Authors: Benedict Kjærgaard, Egidijus Bavarskis, Sigridur Olga Magnusdottir, Charlotte Runge, Daiva Erentaite, Jes Sefland Vogt, Mette Dahl Bendtsen

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2016

Login to get access

Abstract

Background

The optimal method for out-of-hospital ventilation during cardiopulmonary rescue (CPR) is controversial.
The aim of this study was to test different modes of ventilation during CPR for a prolonged period of 60 min.

Methods

Pigs were randomized to four groups after the induction of ventricular fibrillation, which was followed by one hour of mechanical cardiac compressions. The study comprised five pigs treated with free airways, five pigs treated with ventilators, six pigs treated with a constant oxygen flow into the tube, and six pigs treated with apnoeic oxygenation.

Results

The free airway group was tested for 1 h, but in the first 15 min, the median PaO2 had already dropped to 5.1 kPa.
The ventilator group was tested for 1 h and still had an acceptable median PaO2 of 10.3 kPa in the last 15 min. The group was slightly hyperventilated, with PaCO2 at 3.8 kPa, even though the ventilator volumes were unchanged from those before induction of cardiac arrest.
In the group with constant oxygen flowing into the tube, one pig was excluded after 47 min due to blood pressure below 25 mmHg. For the remaining 5 pigs, the median PaO2 in the last 15 min was still 14.3 kPa, and the median PaCO2 was 6.2 kPa.
The group with apnoeic oxygenation for 1 h had a resulting median PaO2 of 10.2 kPa and a median PaCO2 of 12.3 kPa in the last 15 min.

Discussion

Except for the free airway group, the other methods resulted in PaO2 above 10 kPa and PaCO2 between 3.8 and 12.3 kPa after one hour.

Conclusion

Constant oxgen flow and apnoeic oxygenation seemed to be useable alternatives to ventilator treatment.
Literature
1.
go back to reference Wik L, Olsen JA, Persse D, Sterz F, Lozano Jr M, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.CrossRefPubMed Wik L, Olsen JA, Persse D, Sterz F, Lozano Jr M, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.CrossRefPubMed
2.
go back to reference Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation. 2015;95:1–80.CrossRefPubMed Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation. 2015;95:1–80.CrossRefPubMed
3.
go back to reference Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRefPubMed Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRefPubMed
4.
go back to reference Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. 2004;32(9 Suppl):S345–51.CrossRefPubMed Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. 2004;32(9 Suppl):S345–51.CrossRefPubMed
5.
go back to reference Maertens VL, De Smedt LE, Lemoyne S, Huybrechts SA, Wouters K, Kalmar AF, et al. Patients with cardiac arrest are ventilated two times faster than guidelines recommend: an observational prehospital study using tracheal pressure measurement. Resuscitation. 2013;84(7):921–6.CrossRefPubMed Maertens VL, De Smedt LE, Lemoyne S, Huybrechts SA, Wouters K, Kalmar AF, et al. Patients with cardiac arrest are ventilated two times faster than guidelines recommend: an observational prehospital study using tracheal pressure measurement. Resuscitation. 2013;84(7):921–6.CrossRefPubMed
6.
go back to reference Schneider AG, Eastwood GM, Bellomo R, Bailey M, Lipcsey M, Pilcher D, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation. 2013;84(7):927–34.CrossRefPubMed Schneider AG, Eastwood GM, Bellomo R, Bailey M, Lipcsey M, Pilcher D, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation. 2013;84(7):927–34.CrossRefPubMed
7.
go back to reference Botran M, Lopez-Herce J, Urbano J, Solana MJ, Garcia A, Carrillo A. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2011;37(11):1873–80.CrossRefPubMed Botran M, Lopez-Herce J, Urbano J, Solana MJ, Garcia A, Carrillo A. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2011;37(11):1873–80.CrossRefPubMed
8.
go back to reference Yannopoulos D, Matsuura T, McKnite S, Goodman N, Idris A, Tang W, et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Crit Care Med. 2010;38(1):254–60.CrossRefPubMed Yannopoulos D, Matsuura T, McKnite S, Goodman N, Idris A, Tang W, et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Crit Care Med. 2010;38(1):254–60.CrossRefPubMed
9.
go back to reference Isabey D, Boussignac G, Harf A. Effect of air entrainment on airway pressure during endotracheal gas injection. J Appl Physiol (1985). 1989;67(2):771–9. Isabey D, Boussignac G, Harf A. Effect of air entrainment on airway pressure during endotracheal gas injection. J Appl Physiol (1985). 1989;67(2):771–9.
10.
go back to reference Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression-active decompression CPR. Resuscitation. 2004;62(2):219–27.CrossRefPubMed Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression-active decompression CPR. Resuscitation. 2004;62(2):219–27.CrossRefPubMed
11.
go back to reference Noc M, Weil MH, Sun S, Tang W, Bisera J. Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med. 1994;150(3):861–4.CrossRefPubMed Noc M, Weil MH, Sun S, Tang W, Bisera J. Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med. 1994;150(3):861–4.CrossRefPubMed
12.
go back to reference Kjaergaard B, Zepernick PR, Bergmann A, Jensen HK, Mladenovic M, Rasmussen BS. CT-guided needle lung biopsy is possible during apneic oxygenation: a case series. Multidiscip Respir Med. 2013;8(1):73.CrossRefPubMedPubMedCentral Kjaergaard B, Zepernick PR, Bergmann A, Jensen HK, Mladenovic M, Rasmussen BS. CT-guided needle lung biopsy is possible during apneic oxygenation: a case series. Multidiscip Respir Med. 2013;8(1):73.CrossRefPubMedPubMedCentral
13.
go back to reference Kolettas AA, Tsaousi GG, Grosomanidis V, Karakoulas KA, Thomareis O, Kotzampassi K, et al. Influence of apneic oxygenation on cardiorespiratory system homeostasis. J Anesth. 2014;28(2):172–9.CrossRefPubMed Kolettas AA, Tsaousi GG, Grosomanidis V, Karakoulas KA, Thomareis O, Kotzampassi K, et al. Influence of apneic oxygenation on cardiorespiratory system homeostasis. J Anesth. 2014;28(2):172–9.CrossRefPubMed
14.
go back to reference Nielsen ND, Kjaergaard B, Koefoed-Nielsen J, Steensen CO, Larsson A. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury. ASAIO J. 2008;54(4):401–5.CrossRefPubMed Nielsen ND, Kjaergaard B, Koefoed-Nielsen J, Steensen CO, Larsson A. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury. ASAIO J. 2008;54(4):401–5.CrossRefPubMed
15.
go back to reference Nielsen ND, Andersen G, Kjaergaard B, Staerkind ME, Larsson A. Alveolar accumulation/concentration of nitrogen during apneic oxygenation with arteriovenous carbon dioxide removal. ASAIO J. 2010;56(1):30–4.CrossRefPubMed Nielsen ND, Andersen G, Kjaergaard B, Staerkind ME, Larsson A. Alveolar accumulation/concentration of nitrogen during apneic oxygenation with arteriovenous carbon dioxide removal. ASAIO J. 2010;56(1):30–4.CrossRefPubMed
16.
go back to reference Wang S, Wu JY, Guo ZJ, Li CS. Effect of rescue breathing during cardiopulmonary resuscitation on lung function after restoration of spontaneous circulation in a porcine model of prolonged cardiac arrest. Crit Care Med. 2013;41(1):102–10.CrossRefPubMed Wang S, Wu JY, Guo ZJ, Li CS. Effect of rescue breathing during cardiopulmonary resuscitation on lung function after restoration of spontaneous circulation in a porcine model of prolonged cardiac arrest. Crit Care Med. 2013;41(1):102–10.CrossRefPubMed
17.
go back to reference Idris AH, Becker LB, Ornato JP, Hedges JR, Bircher NG, Chandra NC, et al. Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a Task Force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Resuscitation. 1996;33(1):69–84.CrossRefPubMed Idris AH, Becker LB, Ornato JP, Hedges JR, Bircher NG, Chandra NC, et al. Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a Task Force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Resuscitation. 1996;33(1):69–84.CrossRefPubMed
18.
go back to reference De RE, Liu JM, Blomquist S, Dahm PL, Thorne J, Jonson B. Elastic properties of the lung and the chest wall in young and adult healthy pigs. Eur Respir J. 2001;17(4):703–11.CrossRef De RE, Liu JM, Blomquist S, Dahm PL, Thorne J, Jonson B. Elastic properties of the lung and the chest wall in young and adult healthy pigs. Eur Respir J. 2001;17(4):703–11.CrossRef
19.
go back to reference Iglesias JM, Lopez-Herce J, Urbano J, Solana MJ, Mencia S, Del CJ. Chest compressions versus ventilation plus chest compressions in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2010;36(4):712–6.CrossRefPubMed Iglesias JM, Lopez-Herce J, Urbano J, Solana MJ, Mencia S, Del CJ. Chest compressions versus ventilation plus chest compressions in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2010;36(4):712–6.CrossRefPubMed
20.
go back to reference Bertrand C, Hemery F, Carli P, Goldstein P, Espesson C, Ruttimann M, et al. Constant flow insufflation of oxygen as the sole mode of ventilation during out-of-hospital cardiac arrest. Intensive Care Med. 2006;32(6):843–51.CrossRefPubMed Bertrand C, Hemery F, Carli P, Goldstein P, Espesson C, Ruttimann M, et al. Constant flow insufflation of oxygen as the sole mode of ventilation during out-of-hospital cardiac arrest. Intensive Care Med. 2006;32(6):843–51.CrossRefPubMed
21.
go back to reference Saissy JM, Boussignac G, Cheptel E, Rouvin B, Fontaine D, Bargues L, et al. Efficacy of continuous insufflation of oxygen combined with active cardiac compression-decompression during out-of-hospital cardiorespiratory arrest. Anesthesiology. 2000;92(6):1523–30.CrossRefPubMed Saissy JM, Boussignac G, Cheptel E, Rouvin B, Fontaine D, Bargues L, et al. Efficacy of continuous insufflation of oxygen combined with active cardiac compression-decompression during out-of-hospital cardiorespiratory arrest. Anesthesiology. 2000;92(6):1523–30.CrossRefPubMed
22.
go back to reference Debaty G, Segal N, Matsuura T, Fahey B, Wayne M, Mahoney B, et al. Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest. Resuscitation. 2014;85(12):1704–7.CrossRefPubMed Debaty G, Segal N, Matsuura T, Fahey B, Wayne M, Mahoney B, et al. Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest. Resuscitation. 2014;85(12):1704–7.CrossRefPubMed
23.
Metadata
Title
Four ways to ventilate during cardiopulmonary resuscitation in a porcine model: a randomized study
Authors
Benedict Kjærgaard
Egidijus Bavarskis
Sigridur Olga Magnusdottir
Charlotte Runge
Daiva Erentaite
Jes Sefland Vogt
Mette Dahl Bendtsen
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-016-0262-z

Other articles of this Issue 1/2016

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016 Go to the issue