Skip to main content
Top
Published in: Journal of Ovarian Research 1/2019

Open Access 01-12-2019 | Polycystic Ovary Syndrome | Research

Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice

Authors: Yuya Fujibe, Tsuyoshi Baba, Sachiko Nagao, Sayaka Adachi, Keiko Ikeda, Miyuki Morishita, Yoshika Kuno, Masahiro Suzuki, Masahito Mizuuchi, Hiroyuki Honnma, Toshiaki Endo, Tsuyoshi Saito

Published in: Journal of Ovarian Research | Issue 1/2019

Login to get access

Abstract

Hyperandrogenism is one of the cardinal symptoms in polycystic ovary syndrome and plays a key role in the pathogenesis of polycystic ovary syndrome. However, the precise effects and mechanisms of excess androgen during follicular development are still unclear. Here we investigated the effects of androgen on mouse follicle development in vitro. Androgen did not affect the growth of follicles smaller than 160–180 μm in the presence of follicle-stimulating hormone (FSH). However, in the presence of low FSH, androgen supported the growth of follicles larger than 160–180 μm, a size at which growing follicles acquire FSH-dependency. Androgen did not change the mRNA expression of various growth-promoting factors but did increase mRNA expression of the FSH receptor. We suggest that androgen has a positive impact on follicle development by augmentation of the actions of FSH. Therefore, FSH-responsive but FSH-independent follicles grow in the presence of a certain level of FSH or androgen, and androgen compensates for FSH deficiency in FSH-dependent follicles.
Literature
1.
go back to reference Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.PubMed Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.PubMed
2.
go back to reference Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. Boston: Blackwell Scientific Publications; 1992. p. 377–84. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. Boston: Blackwell Scientific Publications; 1992. p. 377–84.
3.
go back to reference Mohammad MB, Seghinsara AM. Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH. Asian Pac J Cancer Prev. 2017;18:17–21.PubMedCentral Mohammad MB, Seghinsara AM. Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH. Asian Pac J Cancer Prev. 2017;18:17–21.PubMedCentral
4.
go back to reference Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale FH, Futterweit W, Janssen OE, Lergo RS, Norman RJ, Taylor AE, Witchel SF. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.CrossRef Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale FH, Futterweit W, Janssen OE, Lergo RS, Norman RJ, Taylor AE, Witchel SF. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.CrossRef
5.
go back to reference Honnma H, Endo T, Henmi H, Nagasawa K, Baba T, Yamazaki K, Kitajima Y, Hayashi T, Manase K, Saito T. Altered expression of Fas/Fas ligand/caspase 8 and membrane type 1-matrix metalloproteinase in atretic follicles within dehydroepiandrosterone-induced polycystic ovaries in rats. Apoptosis. 2006;11:1525–33.CrossRef Honnma H, Endo T, Henmi H, Nagasawa K, Baba T, Yamazaki K, Kitajima Y, Hayashi T, Manase K, Saito T. Altered expression of Fas/Fas ligand/caspase 8 and membrane type 1-matrix metalloproteinase in atretic follicles within dehydroepiandrosterone-induced polycystic ovaries in rats. Apoptosis. 2006;11:1525–33.CrossRef
6.
go back to reference Ikeda K, Baba T, Morishita M, Honnma H, Endo T, Kiya T, Saito T. Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone. J Ovarian Res. 2014;7:46.CrossRef Ikeda K, Baba T, Morishita M, Honnma H, Endo T, Kiya T, Saito T. Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone. J Ovarian Res. 2014;7:46.CrossRef
7.
go back to reference Mannerås L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, Elisabet SV. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology. 2007;148:3781–91.CrossRef Mannerås L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, Elisabet SV. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology. 2007;148:3781–91.CrossRef
8.
go back to reference Dumesic DA, Abott DH. Implications of polycystic ovary syndrome (PCOS) on oocyte development. Semin Reprod Med. 2008;26(1):53–61.CrossRef Dumesic DA, Abott DH. Implications of polycystic ovary syndrome (PCOS) on oocyte development. Semin Reprod Med. 2008;26(1):53–61.CrossRef
9.
go back to reference Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Human Reproductive Update. 2008;14(4):367–78.CrossRef Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Human Reproductive Update. 2008;14(4):367–78.CrossRef
10.
go back to reference Hardy K, Fenwick M, Mora J, Laird M, Thomson K, Franks S. Onset and heterogeneity of responsiveness to FSH in mouse preantral follicles in culture. Endocrinology. 2017;158:134–47.PubMed Hardy K, Fenwick M, Mora J, Laird M, Thomson K, Franks S. Onset and heterogeneity of responsiveness to FSH in mouse preantral follicles in culture. Endocrinology. 2017;158:134–47.PubMed
11.
go back to reference Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, Barad D, Gleicher N, Hammes SR. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111:3008–13.CrossRef Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, Barad D, Gleicher N, Hammes SR. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111:3008–13.CrossRef
12.
go back to reference Laird M, Thomson K, Fenwick M, Mora J, Franks S, Hardy K. Androgen stimulates growth of mouse preantral follicles in vitro: interaction with follicle-stimulating hormone and with growth factors of the TGFb superfamily. Endocrinology. 2017;158:920–35.CrossRef Laird M, Thomson K, Fenwick M, Mora J, Franks S, Hardy K. Androgen stimulates growth of mouse preantral follicles in vitro: interaction with follicle-stimulating hormone and with growth factors of the TGFb superfamily. Endocrinology. 2017;158:920–35.CrossRef
13.
go back to reference Halpin DM, Charlton HM. Effects of short-term injection of gonadotrophins on ovarian follicle development in hypogonadal (hpg) mice. J Reprod Fertil. 1988;82:393–400.CrossRef Halpin DM, Charlton HM. Effects of short-term injection of gonadotrophins on ovarian follicle development in hypogonadal (hpg) mice. J Reprod Fertil. 1988;82:393–400.CrossRef
14.
go back to reference Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil. 1968;17:555–7.CrossRef Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil. 1968;17:555–7.CrossRef
15.
go back to reference Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27:714–23 Epub 2005 Aug 1.CrossRef Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27:714–23 Epub 2005 Aug 1.CrossRef
16.
go back to reference McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.PubMed McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.PubMed
17.
go back to reference Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A. 1998;95:13612–7.CrossRef Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A. 1998;95:13612–7.CrossRef
18.
go back to reference Xu J, Bernuci MP, Lawson MS, Yeoman RR, Fisher TE, Zelinski MB, Stouffer RL. Survival, growth, and maturation of secondary follicles from prepubertal, young, and older adult rhesus monkeys during encapsulated three-dimensional culture: effects of gonadotropins and insulin. Reproduction. 2010;140:685–97.CrossRef Xu J, Bernuci MP, Lawson MS, Yeoman RR, Fisher TE, Zelinski MB, Stouffer RL. Survival, growth, and maturation of secondary follicles from prepubertal, young, and older adult rhesus monkeys during encapsulated three-dimensional culture: effects of gonadotropins and insulin. Reproduction. 2010;140:685–97.CrossRef
19.
go back to reference Baba T, Ting AY, Tkachenko O, Xu J, Stouffer RL. Direct actions of androgen, estrogen and anti-Müllerian hormone on primate secondary follicle development in the absence of FSH in vitro. Hum Reprod. 2017;32:2456–64.CrossRef Baba T, Ting AY, Tkachenko O, Xu J, Stouffer RL. Direct actions of androgen, estrogen and anti-Müllerian hormone on primate secondary follicle development in the absence of FSH in vitro. Hum Reprod. 2017;32:2456–64.CrossRef
20.
go back to reference Lan ZJ, Krause MS, Redding SD, Li X, Wu GZ, Zhou HX, Bohler HC, Ko C, Cooney AJ, Zhou J, Lei ZM. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice. Mol Cell Endocrinol. 2017;444:26–37.CrossRef Lan ZJ, Krause MS, Redding SD, Li X, Wu GZ, Zhou HX, Bohler HC, Ko C, Cooney AJ, Zhou J, Lei ZM. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice. Mol Cell Endocrinol. 2017;444:26–37.CrossRef
21.
go back to reference Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ, Richards JS. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res. 2009;69:6463–72.CrossRef Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ, Richards JS. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res. 2009;69:6463–72.CrossRef
22.
go back to reference Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31:1522–30.CrossRef Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31:1522–30.CrossRef
Metadata
Title
Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice
Authors
Yuya Fujibe
Tsuyoshi Baba
Sachiko Nagao
Sayaka Adachi
Keiko Ikeda
Miyuki Morishita
Yoshika Kuno
Masahiro Suzuki
Masahito Mizuuchi
Hiroyuki Honnma
Toshiaki Endo
Tsuyoshi Saito
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2019
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-019-0505-5

Other articles of this Issue 1/2019

Journal of Ovarian Research 1/2019 Go to the issue