Skip to main content
Top
Published in: Journal of Ovarian Research 1/2019

Open Access 01-12-2019 | Ovarian Cancer | Research

Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers

Authors: Paweł Sadłecki, Marek Grabiec, Dariusz Grzanka, Jakub Jóźwicki, Paulina Antosik, Małgorzata Walentowicz-Sadłecka

Published in: Journal of Ovarian Research | Issue 1/2019

Login to get access

Abstract

Low-grade ovarian cancers represent up to 8% of all epithelial ovarian carcinomas (EOCs). Recent studies demonstrated that epithelial-mesenchymal transition (EMT) is crucial for the progression of EOCs. EMT plays a key role in cancer invasion, metastasis formation and chemotherapy resistance. An array of novel EMT transcription factors from the zinc finger protein family have been described recently, among them zinc finger protein 143 (ZNF143) and zinc finger protein 281 (ZNF281). The study included tissue specimens from 42 patients. Based on histopathological examination of surgical specimens, eight lesions were classified as serous borderline ovarian tumors (sBOTs) and 34 as low-grade EOCs. The proportions of the ovarian tumors that tested positively for ZNF143 and ZNF281 were 90 and 57%, respectively. No statistically significant differences were found in the expressions of ZNF143 and ZNF281 transcription factors in SBOTs and low-grade EOCs. Considering the expression patterns for ZNF143 and ZNF281 identified in this study, both sBOTs and low-grade EOCs might undergo a dynamic epithelial-mesenchymal interconversion. The lack of statistically significant differences in the expressions of the zinc finger proteins in sBOTs and low-grade serous EOCs might constitute an evidence for common origin of these two tumor types.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A Global Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, in press. The online GLOBOCAN 2018 database is accessible at http://gco.iarc.fr/, as part of IARC’s Global Cancer Observatory. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A Global Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, in press. The online GLOBOCAN 2018 database is accessible at http://​gco.​iarc.​fr/​, as part of IARC’s Global Cancer Observatory.
2.
go back to reference Shih IM, Kurman RJ. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164:1511–8.CrossRef Shih IM, Kurman RJ. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164:1511–8.CrossRef
3.
go back to reference Fischerova D, Zikan M, Dundr P, Cibula D. Diagnosis, treatment, and follow-up of borderline ovarian tumors. Oncologist. 2012;17(12):1515–33.CrossRef Fischerova D, Zikan M, Dundr P, Cibula D. Diagnosis, treatment, and follow-up of borderline ovarian tumors. Oncologist. 2012;17(12):1515–33.CrossRef
4.
go back to reference Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186:733–47.CrossRef Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186:733–47.CrossRef
5.
go back to reference Morgan RJ Jr, Alvarez RD, Armstrong DK, et al. Ovarian cancer, version 2.2013. J Natl Compr Cancer Netw. 2013;11(10):1199–209.CrossRef Morgan RJ Jr, Alvarez RD, Armstrong DK, et al. Ovarian cancer, version 2.2013. J Natl Compr Cancer Netw. 2013;11(10):1199–209.CrossRef
6.
go back to reference Karnezis AN, Cho KR, Gilks CB, Pearce CL, Huntsman DG. The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer. 2016;17:65.CrossRef Karnezis AN, Cho KR, Gilks CB, Pearce CL, Huntsman DG. The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer. 2016;17:65.CrossRef
8.
go back to reference Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRef Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRef
9.
go back to reference Yan H, Sun Y. Evaluation of the mechanism of epithelial-mesenchymal transition in human ovarian cancer stem cells transfected with a WW domain-containing oxidoreductase gene. Oncol Lett. 2014;8:426–30.CrossRef Yan H, Sun Y. Evaluation of the mechanism of epithelial-mesenchymal transition in human ovarian cancer stem cells transfected with a WW domain-containing oxidoreductase gene. Oncol Lett. 2014;8:426–30.CrossRef
10.
go back to reference Weinberg RA. Mechanisms of malignant progression. Carcinogenesis. 2008;29:1092–5.CrossRef Weinberg RA. Mechanisms of malignant progression. Carcinogenesis. 2008;29:1092–5.CrossRef
11.
go back to reference Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291:59–66.CrossRef Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291:59–66.CrossRef
12.
go back to reference Myslinski E, Krol A, Carbon P. ZNF76 andZNF143 are two human homologs of the transcriptional activator Staf. J Biol Chem. 1998;273:21998–2006.CrossRef Myslinski E, Krol A, Carbon P. ZNF76 andZNF143 are two human homologs of the transcriptional activator Staf. J Biol Chem. 1998;273:21998–2006.CrossRef
13.
go back to reference Lu W, Chen Z, Zhang H, Wang Y, Luo Y, Huang P. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction. Cell Death Dis. 2012;3:e422.CrossRef Lu W, Chen Z, Zhang H, Wang Y, Luo Y, Huang P. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction. Cell Death Dis. 2012;3:e422.CrossRef
14.
go back to reference Izumi H, Yasuniwa Y, Akiyama M, et al. Forced expression of ZNF143 restrains Cancer cell growth. Cancers. 2011;3:3909–20.CrossRef Izumi H, Yasuniwa Y, Akiyama M, et al. Forced expression of ZNF143 restrains Cancer cell growth. Cancers. 2011;3:3909–20.CrossRef
15.
go back to reference Paek AR, Lee CH, You HJ. A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells. Mol Carcinog. 2014;53(1):E161–8.CrossRef Paek AR, Lee CH, You HJ. A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells. Mol Carcinog. 2014;53(1):E161–8.CrossRef
16.
go back to reference Kawatsu Y, Kitada S, Uramoto H, et al. The combination of strong expression of ZNF143 and high MIB-1 labelling index independently predicts shorter disease-specific survival in lung adenocarcinoma. Br J Cancer. 2014;110:2583–92.CrossRef Kawatsu Y, Kitada S, Uramoto H, et al. The combination of strong expression of ZNF143 and high MIB-1 labelling index independently predicts shorter disease-specific survival in lung adenocarcinoma. Br J Cancer. 2014;110:2583–92.CrossRef
17.
go back to reference Wei S, Wang L, Zhang L, et al. ZNF143 enhances metastasis of gastric cancer by promoting the process of EMT through PI3K/AKT signaling pathway. Tumour Biol. 2016;77:12813–21.CrossRef Wei S, Wang L, Zhang L, et al. ZNF143 enhances metastasis of gastric cancer by promoting the process of EMT through PI3K/AKT signaling pathway. Tumour Biol. 2016;77:12813–21.CrossRef
18.
go back to reference Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition. EMBO J. 2013;32:3079–95.CrossRef Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition. EMBO J. 2013;32:3079–95.CrossRef
19.
go back to reference Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS. Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res. 2009;69:709–17.CrossRef Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS. Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res. 2009;69:709–17.CrossRef
20.
go back to reference Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial–mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23:768–83.CrossRef Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial–mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23:768–83.CrossRef
21.
go back to reference Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, et al. SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012;72:4597–608.CrossRef Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, et al. SOX4 induces epithelial–mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012;72:4597–608.CrossRef
22.
go back to reference Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med. 2014;92:571–81.CrossRef Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med. 2014;92:571–81.CrossRef
24.
go back to reference Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28:1248–50.CrossRef Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28:1248–50.CrossRef
25.
go back to reference Remmele W, Stegner HE. Vorschlag zur einheitlichen definition eines Immunoreaktiven Score (IRS) fur den immunohistochemischen Oestrogenrezeptor-Nachweis (ER-ICA) im Mammakarzinomgewebe. Pathologe. 1987;8:138–40.PubMed Remmele W, Stegner HE. Vorschlag zur einheitlichen definition eines Immunoreaktiven Score (IRS) fur den immunohistochemischen Oestrogenrezeptor-Nachweis (ER-ICA) im Mammakarzinomgewebe. Pathologe. 1987;8:138–40.PubMed
26.
go back to reference Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23:53.CrossRef Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23:53.CrossRef
27.
go back to reference Kim SH, Kim EJ, Hitomi M, Oh SY, Jin X, Jeon HM, et al. The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells. Cell Death Differ. 2015;22:1517–25.CrossRef Kim SH, Kim EJ, Hitomi M, Oh SY, Jin X, Jeon HM, et al. The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells. Cell Death Differ. 2015;22:1517–25.CrossRef
28.
go back to reference Smolikova K, Mlynarcikova A, Scsukova S. Role of interleukins in the regulation of ovarian functions. Endocr Regul. 2012;46:237–53.CrossRef Smolikova K, Mlynarcikova A, Scsukova S. Role of interleukins in the regulation of ovarian functions. Endocr Regul. 2012;46:237–53.CrossRef
29.
go back to reference Thompson MS, Mok S. Immunopathogenesis of ovarian cancer. Minerva Med. 2009;100:357–70.PubMed Thompson MS, Mok S. Immunopathogenesis of ovarian cancer. Minerva Med. 2009;100:357–70.PubMed
30.
go back to reference Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008;27:6958–69.CrossRef Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008;27:6958–69.CrossRef
31.
go back to reference Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.CrossRef Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.CrossRef
32.
go back to reference Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121:727–35.CrossRef Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121:727–35.CrossRef
33.
go back to reference Han R, Xiong J, Xiao R, Altaf E, Wang J, Liu Y, et al. Activation of beta-catenin signaling is critical for doxorubicin-induced epithelialmesenchymal transition in bgc-823 gastric cancer cell line. Tumour Biol. 2013;34:277–84.CrossRef Han R, Xiong J, Xiao R, Altaf E, Wang J, Liu Y, et al. Activation of beta-catenin signaling is critical for doxorubicin-induced epithelialmesenchymal transition in bgc-823 gastric cancer cell line. Tumour Biol. 2013;34:277–84.CrossRef
34.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRef
35.
go back to reference Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P. Krabzinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics. 2013;14:268–78.CrossRef Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P. Krabzinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics. 2013;14:268–78.CrossRef
36.
go back to reference Benedet JL, Bender H, Jones H III, et al. Staging classifications and clinical practice guidelines of gynaecologic cancers. Int J Gynecol Obstet. 2000;70:207–312.CrossRef Benedet JL, Bender H, Jones H III, et al. Staging classifications and clinical practice guidelines of gynaecologic cancers. Int J Gynecol Obstet. 2000;70:207–312.CrossRef
41.
go back to reference Myslinski E, Gerard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Res. 2007;35:3453–64.CrossRef Myslinski E, Gerard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Res. 2007;35:3453–64.CrossRef
42.
go back to reference Izumi H, Wakasugi T, Shimajiri S, et al. Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes. Cancer Sci. 2010;101:2538–45.CrossRef Izumi H, Wakasugi T, Shimajiri S, et al. Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes. Cancer Sci. 2010;101:2538–45.CrossRef
43.
go back to reference Burger PC, Shibata T, Kleihues P. The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical neuropathology. Am J Surg Pathol. 1986;10(9):611–7.CrossRef Burger PC, Shibata T, Kleihues P. The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical neuropathology. Am J Surg Pathol. 1986;10(9):611–7.CrossRef
44.
go back to reference Oka S, Uramoto H, Shimokawa H, Iwanami T, Tanaka F. The expression of Ki-67, but not proliferating cell nuclear antigen, predicts poor disease free survival in patients with adenocarcinoma of the lung. Anticancer Res. 2011;31(12):4277–82.PubMed Oka S, Uramoto H, Shimokawa H, Iwanami T, Tanaka F. The expression of Ki-67, but not proliferating cell nuclear antigen, predicts poor disease free survival in patients with adenocarcinoma of the lung. Anticancer Res. 2011;31(12):4277–82.PubMed
45.
go back to reference Paek AR, Kim SH, Kim SS, Kim KT, You HJ. IGF-1 induces expression of zinc-finger protein 143 in colon cancer cells through phosphatidylinositide 3-kinase and reactive oxygen species. Exp Mol Med. 2010;42:696–702.CrossRef Paek AR, Kim SH, Kim SS, Kim KT, You HJ. IGF-1 induces expression of zinc-finger protein 143 in colon cancer cells through phosphatidylinositide 3-kinase and reactive oxygen species. Exp Mol Med. 2010;42:696–702.CrossRef
46.
go back to reference Paek AR, You HJ. GAIP-interacting protein, C-terminus is involved in the induction of zinc-finger protein 143 in response to insulin-like growth factor-1 in colon cancer cells. Mol Cells. 2011;32:415–9.CrossRef Paek AR, You HJ. GAIP-interacting protein, C-terminus is involved in the induction of zinc-finger protein 143 in response to insulin-like growth factor-1 in colon cancer cells. Mol Cells. 2011;32:415–9.CrossRef
47.
go back to reference Ishiguchi H, Izumi H, Torigoe T, et al. ZNF143 activates gene expression in response to DNA damage and binds to cisplatin-modified DNA. Int J Cancer. 2004;111:900–9.CrossRef Ishiguchi H, Izumi H, Torigoe T, et al. ZNF143 activates gene expression in response to DNA damage and binds to cisplatin-modified DNA. Int J Cancer. 2004;111:900–9.CrossRef
48.
go back to reference Wakasugi T, Izumi H, Uchiumi T, et al. ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes. Oncogene. 2007;26:5194–203.CrossRef Wakasugi T, Izumi H, Uchiumi T, et al. ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes. Oncogene. 2007;26:5194–203.CrossRef
49.
go back to reference Torigoe T, Izumi H, Ishiguchi H, et al. Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents. 2005;5:15–27.CrossRef Torigoe T, Izumi H, Ishiguchi H, et al. Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents. 2005;5:15–27.CrossRef
50.
go back to reference Giannakeas V, Sopik V, Narod SA. A model for ovarian cancer progression based on inherent resistance. Gynecol Oncol. 2016;142:484–9.CrossRef Giannakeas V, Sopik V, Narod SA. A model for ovarian cancer progression based on inherent resistance. Gynecol Oncol. 2016;142:484–9.CrossRef
51.
go back to reference Laganà AS, Colonese F, Colonese E, et al. Cytogenetic analysis of epithelial ovarian cancer’s stem cells: an overview on new diagnostic and therapeutic perspectives. Eur J Gynaecol Oncol. 2015;36:495–505.PubMed Laganà AS, Colonese F, Colonese E, et al. Cytogenetic analysis of epithelial ovarian cancer’s stem cells: an overview on new diagnostic and therapeutic perspectives. Eur J Gynaecol Oncol. 2015;36:495–505.PubMed
52.
go back to reference Sopik V, Iqbal J, Rosen B, Narod SA. Why have ovarian cancer mortality rates declined? Part II. Case-fatality. Gynecol Oncol. 2015;138(3):750–6.CrossRef Sopik V, Iqbal J, Rosen B, Narod SA. Why have ovarian cancer mortality rates declined? Part II. Case-fatality. Gynecol Oncol. 2015;138(3):750–6.CrossRef
53.
go back to reference Ozols RF, Bundy BF, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2003;21(17):3194–200.CrossRef Ozols RF, Bundy BF, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2003;21(17):3194–200.CrossRef
54.
go back to reference Chiu WT, Huang YF, Tsai HY, et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget. 2014;6(4):2349–65.PubMedCentral Chiu WT, Huang YF, Tsai HY, et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget. 2014;6(4):2349–65.PubMedCentral
55.
go back to reference Wang ZX, Teh CH, Chan CM, Chu C, Rossbach M, Kunarso G, et al. The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells. 2008;26:279–2799.CrossRef Wang ZX, Teh CH, Chan CM, Chu C, Rossbach M, Kunarso G, et al. The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells. 2008;26:279–2799.CrossRef
56.
go back to reference Pieraccioli M, Nicolai S, Antonov A, Somers J, Malewicz M, Melino G, et al. ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4. Oncogene. 2016;35:2592–601.CrossRef Pieraccioli M, Nicolai S, Antonov A, Somers J, Malewicz M, Melino G, et al. ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4. Oncogene. 2016;35:2592–601.CrossRef
57.
go back to reference Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, et al. A EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69:3429–56.CrossRef Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, et al. A EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69:3429–56.CrossRef
58.
go back to reference De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 2005;65:6237–44.CrossRef De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 2005;65:6237–44.CrossRef
59.
go back to reference Jackstadt R, Roeh S, Neumann S, Jung P, Hoffmann R, Horst D, et al. AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med. 2013;210:1331–50.CrossRef Jackstadt R, Roeh S, Neumann S, Jung P, Hoffmann R, Horst D, et al. AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med. 2013;210:1331–50.CrossRef
Metadata
Title
Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers
Authors
Paweł Sadłecki
Marek Grabiec
Dariusz Grzanka
Jakub Jóźwicki
Paulina Antosik
Małgorzata Walentowicz-Sadłecka
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2019
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-019-0501-9

Other articles of this Issue 1/2019

Journal of Ovarian Research 1/2019 Go to the issue