Skip to main content
Top
Published in: Journal of Ovarian Research 1/2018

Open Access 01-12-2018 | Research

Prognostic value of various subtypes of extracellular DNA in ovarian cancer patients

Authors: Katarina Kalavska, Tomas Minarik, Barbora Vlkova, Denisa Manasova, Michaela Kubickova, Andrej Jurik, Jozef Mardiak, Jozef Sufliarsky, Peter Celec, Michal Mego

Published in: Journal of Ovarian Research | Issue 1/2018

Login to get access

Abstract

Background

Patients with ovarian cancer represent a heterogeneous population with a variable prognosis and response to chemotherapy. Plasma DNA has been shown to have a prognostic value in different types of cancer including ovarian carcinoma. Whether total circulating DNA, which can be assessed much easier without knowing the tumor-specific mutations, has similar informative value is currently unknown. The aim of this study was to evaluate the prognostic value of extracellular DNA in advanced ovarian cancer.

Methods

This prospective study included 67 patients (pts) with ovarian cancer treated with 1st line paclitaxel and carboplatin (25 pts) and paclitaxel, carboplatin and bevacizumab (42 pts). Thirty-five patients had optimal surgical debulking before chemotherapy. Extracellular DNA was quantified using real time PCR before administration of chemotherapy (67 pts) and after 6 cycles of chemotherapy (44 pts).

Results

Total extracellular DNA (ecDNA), as well as extracellular DNA of nuclear (nDNA) and mitochondrial origin (mtDNA) significantly (p < 0.05) decreased after 6 cycles of chemotherapy (by 54%, 63% and 52%, respectively. Patients with stage I disease had significantly lower mtDNA compared to patients with stage II-IV (8604 vs. 16, 984 ge/mL, p = 0.03). Patients with lower baseline nDNA had superior progression-free (HR = 0.35 (0.14–0.86)) and overall survival (HR = 0.18 (0.04–0.77). The prognostic value of nDNA was confirmed independent of tumor stage and confirmed in multivariate analysis.

Conclusions

Our data suggest that ecDNA of both, nuclear and mitochondrial origin could be added to prognostic markers in ovarian cancer. Analysis of ecDNA does not require the knowledge of tumor-specific mutations in contrast to the quantification of tumor-derived ecDNA. Study of the dynamics and cell type-specific source of the ecDNA could shed light on its biology in cancer and might help to direct the treatment of ovarian cancer.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRef
2.
go back to reference Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 2011;61(3):183–203.CrossRef Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 2011;61(3):183–203.CrossRef
3.
go back to reference Ahmed FY, Wiltshaw E, A'Hern RP, Nicol B, Shepherd J, Blake P, Fisher C, et al. Natural history and prognosis of untreated stage I epithelial ovarian carcinoma. J Clin Oncol. 1996;14:2968–75.CrossRef Ahmed FY, Wiltshaw E, A'Hern RP, Nicol B, Shepherd J, Blake P, Fisher C, et al. Natural history and prognosis of untreated stage I epithelial ovarian carcinoma. J Clin Oncol. 1996;14:2968–75.CrossRef
4.
go back to reference Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116(8):1918–25.CrossRef Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116(8):1918–25.CrossRef
5.
go back to reference Berek J, Hacker N. Practical gynecologic oncology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2000. Berek J, Hacker N. Practical gynecologic oncology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2000.
6.
go back to reference Francis G, Stein S. Circulating cell-free tumour DNA in the Management of Cancer. Int J Mol Sci. 2015;16(6):14122–42.CrossRef Francis G, Stein S. Circulating cell-free tumour DNA in the Management of Cancer. Int J Mol Sci. 2015;16(6):14122–42.CrossRef
7.
go back to reference Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12.CrossRef Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12.CrossRef
8.
go back to reference Marzese DM, Hirose H, Hoon DS. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn. 2013;13(8):827–44.CrossRef Marzese DM, Hirose H, Hoon DS. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn. 2013;13(8):827–44.CrossRef
9.
go back to reference Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.CrossRef Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.CrossRef
10.
go back to reference Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update. 2014;20(6):905–23.CrossRef Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update. 2014;20(6):905–23.CrossRef
11.
go back to reference Kamat AA, Bischoff FZ, Dang D, Baldwin MF, Han LY, Lin YG, et al. Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther. 2006;5(10):1369–74.CrossRef Kamat AA, Bischoff FZ, Dang D, Baldwin MF, Han LY, Lin YG, et al. Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther. 2006;5(10):1369–74.CrossRef
12.
go back to reference Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance. Oncotarget. 2015;6(39):42008–18.CrossRef Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance. Oncotarget. 2015;6(39):42008–18.CrossRef
13.
go back to reference Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRef Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRef
14.
go back to reference Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as aliquid biopsy for cancer. Clin Chem. 2015;1:112–23.CrossRef Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as aliquid biopsy for cancer. Clin Chem. 2015;1:112–23.CrossRef
15.
go back to reference Ascierto PA, Minor D, Ribas A, Lebbe C, O’Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31:3205–11.CrossRef Ascierto PA, Minor D, Ribas A, Lebbe C, O’Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31:3205–11.CrossRef
16.
go back to reference Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61:297–304.CrossRef Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61:297–304.CrossRef
17.
go back to reference Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.CrossRef Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.CrossRef
18.
go back to reference Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, et al. Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 2005;65:1141–5.CrossRef Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, et al. Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 2005;65:1141–5.CrossRef
20.
go back to reference Capizzi E, Gabusi E, Grigioni AD, De Iaco P, Rosati M, Zamagni C, et al. Quantification of free plasma DNA before and after chemotherapy in patients with advanced epithelial ovarian cancer. Diagn Mol Pathol. 2008;17(1):34–8.PubMed Capizzi E, Gabusi E, Grigioni AD, De Iaco P, Rosati M, Zamagni C, et al. Quantification of free plasma DNA before and after chemotherapy in patients with advanced epithelial ovarian cancer. Diagn Mol Pathol. 2008;17(1):34–8.PubMed
21.
go back to reference Steffensen KD, Madsen CV, Andersen RF, Waldstrom M, Adimi P, Jakobsen A. Prognostic importance of cell-free DNA in chemotherapy resistant ovarian cancer treated with bevacizumab. Eur J Cancer. 2014;50(15):2611–8.CrossRef Steffensen KD, Madsen CV, Andersen RF, Waldstrom M, Adimi P, Jakobsen A. Prognostic importance of cell-free DNA in chemotherapy resistant ovarian cancer treated with bevacizumab. Eur J Cancer. 2014;50(15):2611–8.CrossRef
22.
go back to reference Otsuka J, Okuda T, Sekizawa A, Amemiya S, Saito H, Okai T, et al. Detection of p53 mutations in the plasma DNA of patients with ovarian cancer. Int J Gynecol Cancer. 2004;14(3):459–64.CrossRef Otsuka J, Okuda T, Sekizawa A, Amemiya S, Saito H, Okai T, et al. Detection of p53 mutations in the plasma DNA of patients with ovarian cancer. Int J Gynecol Cancer. 2004;14(3):459–64.CrossRef
23.
go back to reference No JH, Kim K, Park KH, Kim YB. Cell-free DNA level as a prognostic biomarker for epithelial ovarian cancer. Anticancer Res. 2012;32(8):3467–71.PubMed No JH, Kim K, Park KH, Kim YB. Cell-free DNA level as a prognostic biomarker for epithelial ovarian cancer. Anticancer Res. 2012;32(8):3467–71.PubMed
24.
go back to reference Zachariah RR, Schmid S, Buerki N, Radpour R, Holzgreve W, Zhong X. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol. 2008;112(4):843–50.CrossRef Zachariah RR, Schmid S, Buerki N, Radpour R, Holzgreve W, Zhong X. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol. 2008;112(4):843–50.CrossRef
25.
go back to reference Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, et al. Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003;49:719–26.CrossRef Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, et al. Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003;49:719–26.CrossRef
26.
go back to reference Yu M. Circulating cell-free mitochondial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA. 2012;23(5):329–32.CrossRef Yu M. Circulating cell-free mitochondial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA. 2012;23(5):329–32.CrossRef
28.
go back to reference Mandel P. Metais P. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.PubMed Mandel P. Metais P. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.PubMed
29.
go back to reference Zhou Q, Li W, Leng B, Zheng W, He Z, Zuo M, et al. Circulating cell free DNA as the diagnostic marker for ovarian Cancer: a systematic review and meta-analysis. PLoS One. 2016;11(6):e0155495.CrossRef Zhou Q, Li W, Leng B, Zheng W, He Z, Zuo M, et al. Circulating cell free DNA as the diagnostic marker for ovarian Cancer: a systematic review and meta-analysis. PLoS One. 2016;11(6):e0155495.CrossRef
30.
go back to reference Karampini E, McCaughan F. Circulating DNA in solid organ cancers-analysis and clinical application. QJM. 2016;109(4):223–7.CrossRef Karampini E, McCaughan F. Circulating DNA in solid organ cancers-analysis and clinical application. QJM. 2016;109(4):223–7.CrossRef
31.
go back to reference Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2:1035–7.CrossRef Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2:1035–7.CrossRef
32.
go back to reference Wu TL, Zhang D, Chia JH, Tsao K, Sun CF, Wu JT. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta. 2002;321:77–87.CrossRef Wu TL, Zhang D, Chia JH, Tsao K, Sun CF, Wu JT. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta. 2002;321:77–87.CrossRef
33.
go back to reference Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.CrossRef Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.CrossRef
34.
go back to reference Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumor DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 1999;18:65–73.CrossRef Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumor DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 1999;18:65–73.CrossRef
35.
go back to reference Cheng X, Zhang L, Chen Y, Qing C. Circulating cell-free DNA and circulating tumor cells, the “liquid biopsies” in ovarian cancer. J Ovarian Res. 2017;10:75.CrossRef Cheng X, Zhang L, Chen Y, Qing C. Circulating cell-free DNA and circulating tumor cells, the “liquid biopsies” in ovarian cancer. J Ovarian Res. 2017;10:75.CrossRef
37.
go back to reference Ocana A, Diez-Gonzalez L, Garcia-Olmo DC, Templeton AJ, Vera-Badillo F, Jose Escribano M, et al. Circulating DNA and survival in solid tumors. Cancer Epidemiol Biomark Prev. 2016;25(2):399–406.CrossRef Ocana A, Diez-Gonzalez L, Garcia-Olmo DC, Templeton AJ, Vera-Badillo F, Jose Escribano M, et al. Circulating DNA and survival in solid tumors. Cancer Epidemiol Biomark Prev. 2016;25(2):399–406.CrossRef
38.
go back to reference Zhang R, Shao F, Wu X, Ying K. Value of quantitative analysis of circulating cell free DNA as a screening tool for lung cancer: a meta-analysis. Lung Cancer. 2010;69(2):225–31.CrossRef Zhang R, Shao F, Wu X, Ying K. Value of quantitative analysis of circulating cell free DNA as a screening tool for lung cancer: a meta-analysis. Lung Cancer. 2010;69(2):225–31.CrossRef
39.
go back to reference Malkasian GD Jr, Knapp RC, Lavin PT, Zurawski VR Jr, Podratz KC, Stanhope CR, et al. Preoperative evaluation of serum CA125 levels in premenopausal and postmenopausal patients with pelvic masses: discrimination of benign from malignant disease. Am J Obstet Gynecol. 1988;159:341–6.CrossRef Malkasian GD Jr, Knapp RC, Lavin PT, Zurawski VR Jr, Podratz KC, Stanhope CR, et al. Preoperative evaluation of serum CA125 levels in premenopausal and postmenopausal patients with pelvic masses: discrimination of benign from malignant disease. Am J Obstet Gynecol. 1988;159:341–6.CrossRef
40.
go back to reference Wei WI, Yuen AP, Ng RW, Kwong DL, Sham JS. Quantitative analysis of plasma cell-free Epstein-Barr virus DNA in nasopharyngeal carcinoma after salvage nasopharyngectomy: a prospective study. Head Neck. 2004;26:878–83.CrossRef Wei WI, Yuen AP, Ng RW, Kwong DL, Sham JS. Quantitative analysis of plasma cell-free Epstein-Barr virus DNA in nasopharyngeal carcinoma after salvage nasopharyngectomy: a prospective study. Head Neck. 2004;26:878–83.CrossRef
41.
go back to reference Chiu RWK, Poon LLM. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 2001;47:1607–13.PubMed Chiu RWK, Poon LLM. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 2001;47:1607–13.PubMed
42.
go back to reference Leung SF, Chan AT, Zee B, Ma B, Chan LY, Johnson PJ, et al. Pretherapy quantitative measurement of circulating Epstein-Barr virus DNA is predictive of posttherapy distant failure in patients with early-stage nasopharyngeal carcinoma of undifferentiated type. Cancer. 2003;98:288–91.CrossRef Leung SF, Chan AT, Zee B, Ma B, Chan LY, Johnson PJ, et al. Pretherapy quantitative measurement of circulating Epstein-Barr virus DNA is predictive of posttherapy distant failure in patients with early-stage nasopharyngeal carcinoma of undifferentiated type. Cancer. 2003;98:288–91.CrossRef
43.
go back to reference Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, Chassé E, et al. Circulating deoxyribonucleic acid as a prognostic marker in non-small cell lung cancer patients undergoing chemotherapy. J Clin Oncol. 2004;22:4157–64.CrossRef Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, Chassé E, et al. Circulating deoxyribonucleic acid as a prognostic marker in non-small cell lung cancer patients undergoing chemotherapy. J Clin Oncol. 2004;22:4157–64.CrossRef
44.
go back to reference Thijssen MA, Swinkles DW, Ruers TJ, de Kok JB. Difference between free circulating plasma and serum DNA in patients with colorectal cancer metastasis. Anticancer Res. 2002;22:421–5.PubMed Thijssen MA, Swinkles DW, Ruers TJ, de Kok JB. Difference between free circulating plasma and serum DNA in patients with colorectal cancer metastasis. Anticancer Res. 2002;22:421–5.PubMed
45.
go back to reference Shao X, He Y, Ji M, Chen X, Qi J, Shi W, et al. Quantitative analysis of cell-free DNA in ovarian cancer. Oncol Lett. 2015;10:3478–82.CrossRef Shao X, He Y, Ji M, Chen X, Qi J, Shi W, et al. Quantitative analysis of cell-free DNA in ovarian cancer. Oncol Lett. 2015;10:3478–82.CrossRef
46.
go back to reference Shao XF, Ji M, Chen XF, Qi J, Shi W, Zhu ZL, et al. Evaluation of cell-free DNA detection in supplementary diagnosis of ovarian cancer. Chin J Clin Lab Sci. 2014;32(11):821–4. Shao XF, Ji M, Chen XF, Qi J, Shi W, Zhu ZL, et al. Evaluation of cell-free DNA detection in supplementary diagnosis of ovarian cancer. Chin J Clin Lab Sci. 2014;32(11):821–4.
Metadata
Title
Prognostic value of various subtypes of extracellular DNA in ovarian cancer patients
Authors
Katarina Kalavska
Tomas Minarik
Barbora Vlkova
Denisa Manasova
Michaela Kubickova
Andrej Jurik
Jozef Mardiak
Jozef Sufliarsky
Peter Celec
Michal Mego
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2018
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0459-z

Other articles of this Issue 1/2018

Journal of Ovarian Research 1/2018 Go to the issue