Skip to main content
Top
Published in: Journal of Ovarian Research 1/2016

Open Access 01-12-2016 | Research

Effect of testosterone on the Connexin37 of sexual mature mouse cumulus oocyte complex

Authors: Yangyang Zhang, Yang Xu, Yanrong Kuai, Sheng Wang, Qing Xue, Jing Shang

Published in: Journal of Ovarian Research | Issue 1/2016

Login to get access

Abstract

Background

Recent researches demonstrate that pre-treatment with androgen could increase retrieved oocytes number and clinical pregnancy rate in poor ovarian response (POR) patients. In view of gap junction intercellular communication (GJIC) is important for follicular growth, and androgen plays an important role in improving prognosis of POR patients, we speculate that androgen can increase the expression of connexin in follicle cells, and improve ovarian microenvironment, thus can promote ovarian response. The objective of the research is to study the effect of testosterone on connexin37 (Cx37) expression so as to provide theoretical basis for adding testosterone in treatment of POR.

Methods

Cumulus-oocyte-cells (COCs) were collected from ICR mice ovaries, and were cultured in vitro for 48 h and then treated with testosterone (T) at various concentration. To assess whether the effect of androgen on Cx37 expression is mediated through androgen receptor (AR) pathway, COCs were cultured in vitro with Flutamide (androgen receptor antagonist). The expression of Cx37 was determined by western blot.

Results

The expression of Cx37 in COCs which were treated with testosterone was higher than that of control group. There were significant differences (P < 0.001;<0.001;<0.001;<0.001). Cx37 increased with the elevated testosterone concentrations. Cx37 was lower in androgen receptor antagonist group (2.57 ± 0.12) than the corresponding testosterone concentrations group (4.42 ± 0.28). There were significant differences between two groups (P < 0.001).

Conclusions

There was close relationship between gap junction protein and ovarian response, which suggested that androgen could promote ovarian response by increasing the expression of Cx37 in follicle. Androgen plays an important role in ovarian response through the AR pathway and non-AR pathway.
Literature
1.
2.
go back to reference Bosdou JK, Venetis CA, Kolibianakis EM, Toulis KA, Goulis DG, Zepiridis L, et al. The use of androgens or androgen-modulating agents in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(2):127–45. doi:10.1093/humupd/dmr051.CrossRefPubMed Bosdou JK, Venetis CA, Kolibianakis EM, Toulis KA, Goulis DG, Zepiridis L, et al. The use of androgens or androgen-modulating agents in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(2):127–45. doi:10.​1093/​humupd/​dmr051.CrossRefPubMed
6.
go back to reference Tong D, Gittens JE, Kidder GM, Bai D. Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse. Am J Physiol Cell Physiol. 2006;290(1):C290–7. doi:10.1152/ajpcell.00297.2005.CrossRefPubMed Tong D, Gittens JE, Kidder GM, Bai D. Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse. Am J Physiol Cell Physiol. 2006;290(1):C290–7. doi:10.​1152/​ajpcell.​00297.​2005.CrossRefPubMed
8.
go back to reference Talhouk R, Tarraf C, Kobrossy L, Shaito A, Bazzi S, Bazzoun D, et al. Modulation of Cx43 and Gap Junctional Intercellular Communication by Androstenedione in Rat Polycystic Ovary and Granulosa Cells in vitro. J Reprod Infertil. 2012;13(1):21–32.PubMedPubMedCentral Talhouk R, Tarraf C, Kobrossy L, Shaito A, Bazzi S, Bazzoun D, et al. Modulation of Cx43 and Gap Junctional Intercellular Communication by Androstenedione in Rat Polycystic Ovary and Granulosa Cells in vitro. J Reprod Infertil. 2012;13(1):21–32.PubMedPubMedCentral
9.
go back to reference Lossl K, Andersen AN, Loft A, Freiesleben NL, Bangsboll S, Andersen CY. Androgen priming using aromatase inhibitor and hCG during early-follicular-phase GnRH antagonist down-regulation in modified antagonist protocols. Hum Reprod. 2006;21(10):2593–600. doi:10.1093/humrep/del221.CrossRefPubMed Lossl K, Andersen AN, Loft A, Freiesleben NL, Bangsboll S, Andersen CY. Androgen priming using aromatase inhibitor and hCG during early-follicular-phase GnRH antagonist down-regulation in modified antagonist protocols. Hum Reprod. 2006;21(10):2593–600. doi:10.​1093/​humrep/​del221.CrossRefPubMed
10.
go back to reference Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000;15(10):2129–32.CrossRefPubMed Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000;15(10):2129–32.CrossRefPubMed
11.
go back to reference Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Hum Reprod. 2010;25(10):2496–500. doi:10.1093/humrep/deq220.CrossRefPubMed Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Hum Reprod. 2010;25(10):2496–500. doi:10.​1093/​humrep/​deq220.CrossRefPubMed
14.
go back to reference Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod. 1999;14(9):2328–32.CrossRefPubMed Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod. 1999;14(9):2328–32.CrossRefPubMed
16.
go back to reference Cardenas H, Herrick JR, Pope WF. Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction. 2002;123(4):527–33.CrossRefPubMed Cardenas H, Herrick JR, Pope WF. Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction. 2002;123(4):527–33.CrossRefPubMed
17.
go back to reference Yang JL, Zhang CP, Li L, Huang L, Ji SY, Lu CL, et al. Testosterone induces redistribution of forkhead box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic acid expression at early stage of mouse folliculogenesis. Endocrinology. 2010;151(2):774–82. doi:10.1210/en.2009-0751.CrossRefPubMed Yang JL, Zhang CP, Li L, Huang L, Ji SY, Lu CL, et al. Testosterone induces redistribution of forkhead box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic acid expression at early stage of mouse folliculogenesis. Endocrinology. 2010;151(2):774–82. doi:10.​1210/​en.​2009-0751.CrossRefPubMed
18.
go back to reference Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab. 1998;83(7):2479–85. doi:10.1210/jcem.83.7.4917.CrossRefPubMed Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab. 1998;83(7):2479–85. doi:10.​1210/​jcem.​83.​7.​4917.CrossRefPubMed
19.
go back to reference Juengel JL, Heath DA, Quirke LD, McNatty KP. Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction. 2006;131(1):81–92. doi:10.1530/rep.1.00704.CrossRefPubMed Juengel JL, Heath DA, Quirke LD, McNatty KP. Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction. 2006;131(1):81–92. doi:10.​1530/​rep.​1.​00704.CrossRefPubMed
20.
go back to reference Rice S, Ojha K, Whitehead S, Mason H. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Mullerian hormone type II receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92(3):1034–40. doi:10.1210/jc.2006-1697.CrossRefPubMed Rice S, Ojha K, Whitehead S, Mason H. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Mullerian hormone type II receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92(3):1034–40. doi:10.​1210/​jc.​2006-1697.CrossRefPubMed
Metadata
Title
Effect of testosterone on the Connexin37 of sexual mature mouse cumulus oocyte complex
Authors
Yangyang Zhang
Yang Xu
Yanrong Kuai
Sheng Wang
Qing Xue
Jing Shang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2016
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-016-0290-3

Other articles of this Issue 1/2016

Journal of Ovarian Research 1/2016 Go to the issue