Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2017

Open Access 01-12-2017 | Research

The reliability of shear elastic modulus measurement of the ankle plantar flexion muscles is higher at dorsiflexed position of the ankle

Authors: Junya Saeki, Tome Ikezoe, Masatoshi Nakamura, Satoru Nishishita, Noriaki Ichihashi

Published in: Journal of Foot and Ankle Research | Issue 1/2017

Login to get access

Abstract

Background

Excessive stiffness of lower limb muscles is associated with sports injuries. Therefore, the identification of a reliable measurement of the shear elastic modulus of various ankle plantar flexion muscles is required to evaluate lower leg sports injuries. This study investigated the reliable measurement of the shear elastic modulus of the ankle plantar flexion muscles at different ankle positions.

Methods

Twenty-three healthy young men (25.3 ± 3.6 years, 172.9 ± 5.0 cm, 67.2 ± 7.2 kg) participated in this study. The shear elastic moduli of the ankle plantar flexion muscles including the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus and tibialis posterior were measured using ultrasonic shear wave elastography at 0, 10 and 20° dorsiflexion.

Results

The reliability of the shear elastic modulus measurements for each ankle position was assessed. The results showed that the interday reliability of the measurements differed between ankle positions and that the reliability of the shear elastic modulus measurements at 20° dorsiflexion was higher than that at 10° or 0°.

Conclusion

Our results suggest that measurements at 20° dorsiflexion may provide a more reliable measurement of the shear elastic modulus of ankle plantar flexion muscles.
Literature
1.
go back to reference Pamukoff DN, Blackburn JT. Comparison of plantar flexor musculotendinous stiffness, geometry, and architecture in male runners with and without a history of tibial stress fracture. J Appl Biomech. 2015;31:41–7.CrossRefPubMed Pamukoff DN, Blackburn JT. Comparison of plantar flexor musculotendinous stiffness, geometry, and architecture in male runners with and without a history of tibial stress fracture. J Appl Biomech. 2015;31:41–7.CrossRefPubMed
2.
go back to reference Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol. 2010;28:373–8.PubMed Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol. 2010;28:373–8.PubMed
3.
go back to reference Bouche RT, Johnson CH. Medial tibial stress syndrome (tibial fasciitis): a proposed pathomechanical model involving fascial traction. J Am Podiatr Med Assoc. 2007;97:31–6.CrossRefPubMed Bouche RT, Johnson CH. Medial tibial stress syndrome (tibial fasciitis): a proposed pathomechanical model involving fascial traction. J Am Podiatr Med Assoc. 2007;97:31–6.CrossRefPubMed
4.
go back to reference Akiyama K, Akagi R, Hirayama K, Hirose N, Takahashi H, Fukubayshi T. Shear Modulus of the Lower Leg Muscles in Patients with Medial Tibial Stress Syndrome. Ultrasound Med Biol. 2016;42:1779–83.CrossRefPubMed Akiyama K, Akagi R, Hirayama K, Hirose N, Takahashi H, Fukubayshi T. Shear Modulus of the Lower Leg Muscles in Patients with Medial Tibial Stress Syndrome. Ultrasound Med Biol. 2016;42:1779–83.CrossRefPubMed
5.
go back to reference Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46:2381–7.CrossRefPubMed Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46:2381–7.CrossRefPubMed
6.
go back to reference Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45:978–84.CrossRefPubMed Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45:978–84.CrossRefPubMed
7.
8.
go back to reference Nakamura M, Ikezoe T, Kobayashi T, Umegaki H, Takeno Y, Nishishita S, Ichihashi N. Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans: an ultrasonic shear-wave elastography study. Ultrasound Med Biol. 2014;40:1991–7.CrossRefPubMed Nakamura M, Ikezoe T, Kobayashi T, Umegaki H, Takeno Y, Nishishita S, Ichihashi N. Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans: an ultrasonic shear-wave elastography study. Ultrasound Med Biol. 2014;40:1991–7.CrossRefPubMed
9.
go back to reference Dubois G, Kheireddine W, Vergari C, Bonneau D, Thoreux P, Rouch P, Tanter M, Gennisson JL, Skalli W. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound Med Biol. 2015;41:2284–91.CrossRefPubMed Dubois G, Kheireddine W, Vergari C, Bonneau D, Thoreux P, Rouch P, Tanter M, Gennisson JL, Skalli W. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound Med Biol. 2015;41:2284–91.CrossRefPubMed
10.
go back to reference Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas. 2012;33:N19–28.CrossRefPubMed Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas. 2012;33:N19–28.CrossRefPubMed
11.
go back to reference Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36:789–801.CrossRefPubMed Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36:789–801.CrossRefPubMed
12.
go back to reference Akagi R, Takahashi H. Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle. Scand J Med Sci Sports. 2014;24:950–7.CrossRefPubMed Akagi R, Takahashi H. Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle. Scand J Med Sci Sports. 2014;24:950–7.CrossRefPubMed
13.
go back to reference McCullough MB, Ringleb SI, Arai K, Kitaoka HB, Kaufman KR. Moment arms of the ankle throughout the range of motion in three planes. Foot Ankle Int. 2011;32:300–6.CrossRefPubMed McCullough MB, Ringleb SI, Arai K, Kitaoka HB, Kaufman KR. Moment arms of the ankle throughout the range of motion in three planes. Foot Ankle Int. 2011;32:300–6.CrossRefPubMed
14.
go back to reference Akagi R, Yamashita Y, Ueyasu Y. Age-Related Differences in Muscle Shear Moduli in the Lower Extremity. Ultrasound Med Biol. 2015;41:2906–12.CrossRefPubMed Akagi R, Yamashita Y, Ueyasu Y. Age-Related Differences in Muscle Shear Moduli in the Lower Extremity. Ultrasound Med Biol. 2015;41:2906–12.CrossRefPubMed
15.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
16.
go back to reference Hirata K, Kanehisa H, Miyamoto-Mikami E, Miyamoto N. Evidence for intermuscle difference in slack angle in human triceps surae. J Biomech. 2015;48:1210–3.CrossRefPubMed Hirata K, Kanehisa H, Miyamoto-Mikami E, Miyamoto N. Evidence for intermuscle difference in slack angle in human triceps surae. J Biomech. 2015;48:1210–3.CrossRefPubMed
17.
18.
go back to reference Hirayama K, Akagi R, Takahashi H. Reliability of ultrasound elastography for the quantification of transversus abdominis elasticity. Acta Radiol Open. 2015;4:2058460115603420. Hirayama K, Akagi R, Takahashi H. Reliability of ultrasound elastography for the quantification of transversus abdominis elasticity. Acta Radiol Open. 2015;4:2058460115603420.
Metadata
Title
The reliability of shear elastic modulus measurement of the ankle plantar flexion muscles is higher at dorsiflexed position of the ankle
Authors
Junya Saeki
Tome Ikezoe
Masatoshi Nakamura
Satoru Nishishita
Noriaki Ichihashi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2017
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-017-0199-0

Other articles of this Issue 1/2017

Journal of Foot and Ankle Research 1/2017 Go to the issue