Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2017

Open Access 01-12-2017 | Research

3-D computer modelling of malunited posterior malleolar fractures: effect of fragment size and offset on ankle stability, contact pressure and pattern

Authors: Teresa Alonso-Rasgado, David Jimenez-Cruz, Michael Karski

Published in: Journal of Foot and Ankle Research | Issue 1/2017

Login to get access

Abstract

Background

The positioning of the fracture fragment of a posterior malleolus fracture is critical to healing and a successful outcome as malunion of a posterior malleolar fracture, a condition seen in clinical practice, can affect the dynamics of the ankle joint, cause posterolateral rotational subluxation of the talus and ultimately lead to destruction of the joint. Current consensus is to employ anatomic reduction with internal fixation when the fragment size is larger than 25 to 33% of the tibial plafond.

Methods

A 3-dimensional finite element (FE) model of ankle was developed in order to investigate the effect of fragment size (6–15 mm) and offset (1–4 mm) of a malunited posterior malleolus on tibiotalar joint contact area, pressure, motion of joint and ligament forces. Three positions of the joint were simulated; neutral position, 20° dorsiflexion and 30° plantarflexion.

Results

Compared to the intact joint our model predicted that contact area was greater in all malunion scenarios considered. In general, the joint contact area was affected more by section length than section offset. In addition fibula contact area played a role in all the malunion cases.

Conclusions

We found no evidence to support the current consensus of fixing posterior malleolus fractures of greater than 25% of the tibial plafond. Our model predicted joint instability only with the highest level of fracture in a loaded limb at an extreme position of dorsiflexion. No increase of peak contact pressure as a result of malunion was predicted but contact pattern was modified. The results of our study support the view that in cases of posterior malleolar fracture, posttraumatic osteoarthritis occurs as a result of load on areas of cartilage not used to loading rather than an increase in contact pressure. Ankle repositioning resulted in increased force in two ankle ligaments. Our finding could explain commonly reported clinical observations.
Literature
2.
go back to reference Aiyenuro O, Goldberg AJ. Fractures of the foot and ankle. Surgery. 2013;31:474–81. Aiyenuro O, Goldberg AJ. Fractures of the foot and ankle. Surgery. 2013;31:474–81.
4.
go back to reference Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System, 4th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2012. Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System, 4th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2012.
5.
go back to reference Moore KL, Dalley AF, Agur AMR. Moore Clinically Oriented Anatomy, 7th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2014 Moore KL, Dalley AF, Agur AMR. Moore Clinically Oriented Anatomy, 7th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2014
8.
go back to reference Yufit P, Seligson D. Malleolar ankle fractures. A guide to evaluation and treatment. Orthopoaedics Trauma. 2010;24:286–97.CrossRef Yufit P, Seligson D. Malleolar ankle fractures. A guide to evaluation and treatment. Orthopoaedics Trauma. 2010;24:286–97.CrossRef
11.
go back to reference Jaskulka RA, Ittner G, Schedl R. Fractures of the posterior tibial margin: their role in the prognosis of malleolar fractures. J Trauma. 1989;29:1565–70.CrossRefPubMed Jaskulka RA, Ittner G, Schedl R. Fractures of the posterior tibial margin: their role in the prognosis of malleolar fractures. J Trauma. 1989;29:1565–70.CrossRefPubMed
14.
go back to reference Deland JT, Morris GD, Sung IH. Biomechanics of the ankle joint. A perspective on total ankle replacement. Foot Ankle Clin. 2000;5:747–59.PubMed Deland JT, Morris GD, Sung IH. Biomechanics of the ankle joint. A perspective on total ankle replacement. Foot Ankle Clin. 2000;5:747–59.PubMed
15.
go back to reference Calhoun JH, Li F, Ledbetter BR, Viegas SF. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 1994;15:125–33.CrossRefPubMed Calhoun JH, Li F, Ledbetter BR, Viegas SF. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 1994;15:125–33.CrossRefPubMed
17.
go back to reference Veltman ES, Halma JJ, de Gast A. Longterm outcome of 886 posterior malleolar fractures: A systematic review of the literature. Foot Ankle Surg. 2016;22(2):73–7.CrossRefPubMed Veltman ES, Halma JJ, de Gast A. Longterm outcome of 886 posterior malleolar fractures: A systematic review of the literature. Foot Ankle Surg. 2016;22(2):73–7.CrossRefPubMed
19.
go back to reference Lindsjö U. Operative treatment of ankle fracture dislocations. A follow-up study of 306/321 consecutive cases. Clin Orthop Relat Res. 1985;199:28–38. Lindsjö U. Operative treatment of ankle fracture dislocations. A follow-up study of 306/321 consecutive cases. Clin Orthop Relat Res. 1985;199:28–38.
20.
go back to reference McDaniel WJ, Wilson FC. Trimalleolar fractures of the ankle. An end result study. Clin Orthop Relat Res. 1977;122:37–45. McDaniel WJ, Wilson FC. Trimalleolar fractures of the ankle. An end result study. Clin Orthop Relat Res. 1977;122:37–45.
22.
go back to reference Brown TD, Hurlbut PT, Hale JE, et al. Effects of imposed hindfoot constrain on ankle contact mechanics for displaced lateral malleolar fractures. J Orthop Trauma. 1994;8:511–20.CrossRefPubMed Brown TD, Hurlbut PT, Hale JE, et al. Effects of imposed hindfoot constrain on ankle contact mechanics for displaced lateral malleolar fractures. J Orthop Trauma. 1994;8:511–20.CrossRefPubMed
23.
go back to reference Hartford JM, Gorczyca JT, McNamara JL, Mayor MB. Tibiotalar contact area. Contribution of posterior malleolus and deltoid ligament. Clin Orthop Relat Res. 1995;320:182–7. Hartford JM, Gorczyca JT, McNamara JL, Mayor MB. Tibiotalar contact area. Contribution of posterior malleolus and deltoid ligament. Clin Orthop Relat Res. 1995;320:182–7.
24.
go back to reference Macko VW, Matthews LS, Zwirkoski P, Goldstein SA. The joint-contact area of the ankle. The contribution of the posterior malleolus. The Journal of Bone &amp. Joint Surg. 1991;73:347–51. Macko VW, Matthews LS, Zwirkoski P, Goldstein SA. The joint-contact area of the ankle. The contribution of the posterior malleolus. The Journal of Bone &amp. Joint Surg. 1991;73:347–51.
25.
go back to reference de Souza LJ, Gustillo RB, Meyer TJ. Results of operative treatment of displaced external rotation-abduction fractures of the ankle. J Bone Joint Surg Am. 1985;67:1066–74.CrossRefPubMed de Souza LJ, Gustillo RB, Meyer TJ. Results of operative treatment of displaced external rotation-abduction fractures of the ankle. J Bone Joint Surg Am. 1985;67:1066–74.CrossRefPubMed
27.
go back to reference Fitzpatrick DC, Otto JK, McKinley TO, et al. Kinematic and contact stress analysis of posterior malleolus fractures of the ankle. J Orthop Trauma. 2004;18:271–8.CrossRefPubMed Fitzpatrick DC, Otto JK, McKinley TO, et al. Kinematic and contact stress analysis of posterior malleolus fractures of the ankle. J Orthop Trauma. 2004;18:271–8.CrossRefPubMed
28.
go back to reference Vrahas M, Fu F, Veenis B. Intraarticular contact stresses with simulated ankle malunions. J Orthop Trauma. 1994;8:8.CrossRef Vrahas M, Fu F, Veenis B. Intraarticular contact stresses with simulated ankle malunions. J Orthop Trauma. 1994;8:8.CrossRef
29.
go back to reference Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofacial Res. 2014;4(3):200–3.CrossRef Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofacial Res. 2014;4(3):200–3.CrossRef
31.
32.
go back to reference Stops A, Wilcox R, Jin Z. Computational modelling of the natural hip: a review of finite element and multibody simulations. Comput Methods Biomech Biomed Engin. 2012;15(9):963–79.CrossRefPubMed Stops A, Wilcox R, Jin Z. Computational modelling of the natural hip: a review of finite element and multibody simulations. Comput Methods Biomech Biomed Engin. 2012;15(9):963–79.CrossRefPubMed
33.
go back to reference Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng Part H. 2002;216(5):281–98.CrossRef Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng Part H. 2002;216(5):281–98.CrossRef
34.
go back to reference Rahemi H, Mostafavi SK, Esfandiarpour F, Parnianpour M, Shirazi-Adl A. Review of finite element model studies in knee joint biomechanics. J Mod Rehabilitation. 2011;5(3):1–12. Rahemi H, Mostafavi SK, Esfandiarpour F, Parnianpour M, Shirazi-Adl A. Review of finite element model studies in knee joint biomechanics. J Mod Rehabilitation. 2011;5(3):1–12.
36.
go back to reference Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. Proc Inst Mech Eng Part H. 2010;224(7):801–12.CrossRef Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. Proc Inst Mech Eng Part H. 2010;224(7):801–12.CrossRef
37.
go back to reference Alonso-Rasgado T, Jimenez-Cruz D, Bailey CG, et al. Changes in the stress in the femoral head neck junction after osteochondroplasty for hip impingement: A finite element study. J Orthop Res. 2012;30:1999–2006.CrossRefPubMed Alonso-Rasgado T, Jimenez-Cruz D, Bailey CG, et al. Changes in the stress in the femoral head neck junction after osteochondroplasty for hip impingement: A finite element study. J Orthop Res. 2012;30:1999–2006.CrossRefPubMed
38.
go back to reference Miguel-Andres I, Alonso-Rasgado T, Walmsley A, Watts AC. Effect of anconeus muscle blocking on elbow kinematics: electromyographic, inertial sensors and finite element study. Ann Biomed Eng. 2016; 1–14. doi: 10.1007/s10439-016-1715-2 Miguel-Andres I, Alonso-Rasgado T, Walmsley A, Watts AC. Effect of anconeus muscle blocking on elbow kinematics: electromyographic, inertial sensors and finite element study. Ann Biomed Eng. 2016; 1–14. doi: 10.​1007/​s10439-016-1715-2
41.
go back to reference Burstein a H, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6. 1249116.CrossRefPubMed Burstein a H, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6. 1249116.CrossRefPubMed
46.
go back to reference Goh J, Mech A, Lee E, et al. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8. Goh J, Mech A, Lee E, et al. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8.
47.
go back to reference Takebe K, Nakagawa A, Minami H, et al. Role of the fibula in weight-bearing. Clin Orthopaedics Related Res. 1984;184:289–92. Takebe K, Nakagawa A, Minami H, et al. Role of the fibula in weight-bearing. Clin Orthopaedics Related Res. 1984;184:289–92.
48.
go back to reference Wang Q, Whittle M, Cunningham J, Kenwright J. Fibula and its ligaments in load transmission and ankle joint stability. Clin Orthopaedics Related Res. 1996;330:261–70. Wang Q, Whittle M, Cunningham J, Kenwright J. Fibula and its ligaments in load transmission and ankle joint stability. Clin Orthopaedics Related Res. 1996;330:261–70.
51.
go back to reference Raasch WG, Larkin JJ, Draganich LF. Assessment of the posterior malleolus as a restraint to posterior subluxation of the ankle. J Bone Joint Surg Am. 1992;74:1201–6.CrossRefPubMed Raasch WG, Larkin JJ, Draganich LF. Assessment of the posterior malleolus as a restraint to posterior subluxation of the ankle. J Bone Joint Surg Am. 1992;74:1201–6.CrossRefPubMed
52.
go back to reference Stiehl JB, Skrade DA, Needleman RA, et al. Effect of axial load and ankle position on ankle stability. J Orthop Trauma. 1993;7:72–7.CrossRefPubMed Stiehl JB, Skrade DA, Needleman RA, et al. Effect of axial load and ankle position on ankle stability. J Orthop Trauma. 1993;7:72–7.CrossRefPubMed
53.
go back to reference Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: Technical aspects. Med Eng Phys. 2005;27(10):845–61.CrossRefPubMed Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: Technical aspects. Med Eng Phys. 2005;27(10):845–61.CrossRefPubMed
54.
go back to reference Spratley EM, Wayne JS. Computational model of the human elbow and forearm: Application to complex varus instability. Ann Biomed Eng. 2011;39(3):1084–91.CrossRefPubMed Spratley EM, Wayne JS. Computational model of the human elbow and forearm: Application to complex varus instability. Ann Biomed Eng. 2011;39(3):1084–91.CrossRefPubMed
Metadata
Title
3-D computer modelling of malunited posterior malleolar fractures: effect of fragment size and offset on ankle stability, contact pressure and pattern
Authors
Teresa Alonso-Rasgado
David Jimenez-Cruz
Michael Karski
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2017
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-017-0194-5

Other articles of this Issue 1/2017

Journal of Foot and Ankle Research 1/2017 Go to the issue