Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01-12-2020 | Colorectal Cancer | Research

BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies

Authors: Nadia Trivieri, Riccardo Pracella, Maria Grazia Cariglia, Concetta Panebianco, Paola Parrella, Alberto Visioli, Fabrizio Giani, Amata Amy Soriano, Chiara Barile, Giuseppe Canistro, Tiziana Pia Latiano, Lucia Dimitri, Francesca Bazzocchi, Dario Cassano, Angelo L. Vescovi, Valerio Pazienza, Elena Binda

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2020

Login to get access

Abstract

Background

Colorectal cancer (CRC) harboring BRAFV600E mutation exhibits low response to conventional therapy and poorest prognosis. Due to the emerging correlation between gut microbiota and CRC carcinogenesis, we investigated in serrated BRAFV600E cases the existence of a peculiar fecal microbial fingerprint and specific bacterial markers, which might represent a tool for the development of more effective clinical strategies.

Methods

By injecting human CRC stem-like cells isolated from BRAFV600E patients in immunocompromised mice, we described a new xenogeneic model of this subtype of CRC. By performing bacterial 16S rRNA sequencing, the fecal microbiota profile was then investigated either in CRC-carrying mice or in a cohort of human CRC subjects. The microbial communities’ functional profile was also predicted. Data were compared with Mann-Whitney U, Welch’s t-test for unequal variances and Kruskal-Wallis test with Benjamini–Hochberg false discovery rate (FDR) correction, extracted as potential BRAF class biomarkers and selected as model features. The obtained mean test prediction scores were subjected to Receiver Operating characteristic (ROC) analysis. To discriminate the BRAF status, a Random Forest classifier (RF) was employed.

Results

A specific microbial signature distinctive for BRAF status emerged, being the BRAF-mutated cases closer to healthy controls than BRAF wild-type counterpart. In agreement, a considerable score of correlation was also pointed out between bacteria abundance from BRAF-mutated cases and the level of markers distinctive of BRAFV600E pathway, including those involved in inflammation, innate immune response and epithelial-mesenchymal transition. We provide evidence that two candidate bacterial markers, Prevotella enoeca and Ruthenibacterium lactatiformans, more abundant in BRAFV600E and BRAF wild-type subjects respectively, emerged as single factors with the best performance in distinguishing BRAF status (AUROC = 0.72 and 0.74, respectively, 95% confidence interval). Furthermore, the combination of the 10 differentially represented microorganisms between the two groups improved performance in discriminating serrated CRC driven by BRAF mutation from BRAF wild-type CRC cases (AUROC = 0.85, 95% confidence interval, 0.69–1.01).

Conclusion

Overall, our results suggest that BRAFV600E mutation itself drives a distinctive gut microbiota signature and provide predictive CRC-associated bacterial biomarkers able to discriminate BRAF status in CRC patients and, thus, useful to devise non-invasive patient-selective diagnostic strategies and patient-tailored optimized therapies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60 e16.PubMedCrossRef Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60 e16.PubMedCrossRef
3.
go back to reference Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef
4.
go back to reference Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6.PubMedPubMedCentralCrossRef Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6.PubMedPubMedCentralCrossRef
5.
go back to reference Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.PubMedCrossRef Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.PubMedCrossRef
6.
go back to reference De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19(5):614–8.CrossRef De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19(5):614–8.CrossRef
7.
8.
go back to reference Ensari A, Bosman FT, Offerhaus GJ. The serrated polyp: getting it right! J Clin Pathol. 2010;63:665–8.PubMedCrossRef Ensari A, Bosman FT, Offerhaus GJ. The serrated polyp: getting it right! J Clin Pathol. 2010;63:665–8.PubMedCrossRef
9.
go back to reference Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138(6):2088–100.PubMedCrossRef Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138(6):2088–100.PubMedCrossRef
10.
go back to reference Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–64.PubMedCrossRef Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–64.PubMedCrossRef
11.
go back to reference Sakamoto N, Feng Y, Stolfi C, Kurosu Y, Green M, Lin J, et al. BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. Elife. 2017;6:1–25.CrossRef Sakamoto N, Feng Y, Stolfi C, Kurosu Y, Green M, Lin J, et al. BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. Elife. 2017;6:1–25.CrossRef
13.
go back to reference Ursem C, Atreya CE, Van Loon K. Emerging treatment options for BRAF-mutant colorectal cancer. Gastrointest Cancer. 2018;8:13–23.PubMedPubMedCentral Ursem C, Atreya CE, Van Loon K. Emerging treatment options for BRAF-mutant colorectal cancer. Gastrointest Cancer. 2018;8:13–23.PubMedPubMedCentral
14.
go back to reference de Sousae Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD, Hung J, et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676–80.CrossRef de Sousae Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD, Hung J, et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676–80.CrossRef
15.
go back to reference Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRef Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRef
16.
go back to reference Visioli A, Giani F, Trivieri N, Pracella R, Miccinilli E, Cariglia MG, et al. Stemness underpinning all steps of human colorectal cancer defines the core of effective therapeutic strategies. EBioMedicine. 2019;44:346–60.PubMedPubMedCentralCrossRef Visioli A, Giani F, Trivieri N, Pracella R, Miccinilli E, Cariglia MG, et al. Stemness underpinning all steps of human colorectal cancer defines the core of effective therapeutic strategies. EBioMedicine. 2019;44:346–60.PubMedPubMedCentralCrossRef
17.
go back to reference Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70.PubMedPubMedCentralCrossRef Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70.PubMedPubMedCentralCrossRef
18.
go back to reference Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.PubMedPubMedCentralCrossRef Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.PubMedPubMedCentralCrossRef
19.
go back to reference Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.PubMedCrossRef Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.PubMedCrossRef
20.
go back to reference Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal Cancer. Cancer Cell. 2018;33(6):954–64.PubMedCrossRef Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal Cancer. Cancer Cell. 2018;33(6):954–64.PubMedCrossRef
21.
go back to reference Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):1–13.CrossRef Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):1–13.CrossRef
22.
go back to reference Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89.PubMedCrossRefPubMedCentral Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89.PubMedCrossRefPubMedCentral
23.
go back to reference Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5(1):1–11.CrossRef Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5(1):1–11.CrossRef
24.
go back to reference Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019;11(1):1–18. Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019;11(1):1–18.
25.
go back to reference Yoon H, Kim N, Park JH, Kim YS, Lee J, Kim HW, et al. Comparisons of gut microbiota among healthy control, patients with conventional adenoma, sessile serrated adenoma, and colorectal Cancer. J Cancer Prev. 2017;22(2):108–14.PubMedPubMedCentralCrossRef Yoon H, Kim N, Park JH, Kim YS, Lee J, Kim HW, et al. Comparisons of gut microbiota among healthy control, patients with conventional adenoma, sessile serrated adenoma, and colorectal Cancer. J Cancer Prev. 2017;22(2):108–14.PubMedPubMedCentralCrossRef
26.
go back to reference Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, Miller G, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. 2016;4(1):69.PubMedPubMedCentralCrossRef Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, Miller G, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. 2016;4(1):69.PubMedPubMedCentralCrossRef
27.
28.
go back to reference Binda E, Visioli A, Giani F, Trivieri N, Palumbo O, Restelli S, et al. Wnt5a drives an invasive phenotype in human Glioblastoma stem-like cells. Cancer Res. 2017;77(4):996–1007.PubMedCrossRef Binda E, Visioli A, Giani F, Trivieri N, Palumbo O, Restelli S, et al. Wnt5a drives an invasive phenotype in human Glioblastoma stem-like cells. Cancer Res. 2017;77(4):996–1007.PubMedCrossRef
29.
go back to reference Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 2012;22(6):765–80.PubMedPubMedCentralCrossRef Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 2012;22(6):765–80.PubMedPubMedCentralCrossRef
30.
go back to reference Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.PubMedCrossRef Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.PubMedCrossRef
32.
go back to reference Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome Biol. 2019;20(1):1–13.CrossRef Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome Biol. 2019;20(1):1–13.CrossRef
33.
go back to reference Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.PubMedPubMedCentralCrossRef Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.PubMedPubMedCentralCrossRef
34.
go back to reference Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.PubMedPubMedCentralCrossRef Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12(7):e1004977.PubMedPubMedCentralCrossRef Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12(7):e1004977.PubMedPubMedCentralCrossRef
37.
go back to reference Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.PubMedCrossRef Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.PubMedCrossRef
38.
go back to reference Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, Jansen M, et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8(7):745–60.PubMedPubMedCentralCrossRef Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, Jansen M, et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8(7):745–60.PubMedPubMedCentralCrossRef
39.
go back to reference Murakami T, Mitomi H, Saito T, Takahashi M, Sakamoto N, Fukui N, et al. Distinct WNT/ β -catenin signaling activation in the serrated neoplasia pathway and the adenoma-carcinoma sequence of the colorectum. Mod Pathol. 2014;28(1):146–58.PubMedCrossRef Murakami T, Mitomi H, Saito T, Takahashi M, Sakamoto N, Fukui N, et al. Distinct WNT/ β -catenin signaling activation in the serrated neoplasia pathway and the adenoma-carcinoma sequence of the colorectum. Mod Pathol. 2014;28(1):146–58.PubMedCrossRef
40.
go back to reference Mori G, Rampelli S, Orena BS, Rengucci C, Maio GD, Barbieri G, et al. Shifts of Faecal microbiota during sporadic colorectal carcinogenesis. Sci Rep. 2018;8(1):1–11.CrossRef Mori G, Rampelli S, Orena BS, Rengucci C, Maio GD, Barbieri G, et al. Shifts of Faecal microbiota during sporadic colorectal carcinogenesis. Sci Rep. 2018;8(1):1–11.CrossRef
41.
go back to reference Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766.PubMedPubMedCentralCrossRef Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766.PubMedPubMedCentralCrossRef
42.
go back to reference Liang Q, Ma D, Zhu X, Wang Z, Sun TT, Shen C, et al. RING-finger protein 6 amplification activates JAK/STAT3 pathway by modifying SHP-1 Ubiquitylation and associates with poor outcome in colorectal Cancer. Clin Cancer Res. 2018;24(6):1473–85.PubMedCrossRef Liang Q, Ma D, Zhu X, Wang Z, Sun TT, Shen C, et al. RING-finger protein 6 amplification activates JAK/STAT3 pathway by modifying SHP-1 Ubiquitylation and associates with poor outcome in colorectal Cancer. Clin Cancer Res. 2018;24(6):1473–85.PubMedCrossRef
43.
go back to reference Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11.PubMedPubMedCentralCrossRef Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11.PubMedPubMedCentralCrossRef
45.
go back to reference Ryu SH, Kaiko GE, Stappenbeck TS. Cellular differentiation: Potential insight into butyrate paradox? Mol Cell Oncol. 52018. Ryu SH, Kaiko GE, Stappenbeck TS. Cellular differentiation: Potential insight into butyrate paradox? Mol Cell Oncol. 52018.
46.
go back to reference Canani RB, Costanzo MD, Leone L, Bedogni G, Brambilla P, Cianfarani S, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev. 2011;24(2):198–205.PubMedCrossRef Canani RB, Costanzo MD, Leone L, Bedogni G, Brambilla P, Cianfarani S, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev. 2011;24(2):198–205.PubMedCrossRef
47.
go back to reference Mangifesta M, Mancabelli L, Milani C, Gaiani F, de Angelis N, de Angelis GL, et al. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci Rep. 2018;8(1):13974.PubMedPubMedCentralCrossRef Mangifesta M, Mancabelli L, Milani C, Gaiani F, de Angelis N, de Angelis GL, et al. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci Rep. 2018;8(1):13974.PubMedPubMedCentralCrossRef
48.
go back to reference Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501–18.PubMedPubMedCentralCrossRef Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501–18.PubMedPubMedCentralCrossRef
49.
go back to reference Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137(6):1258–68.PubMedCrossRef Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137(6):1258–68.PubMedCrossRef
50.
go back to reference Sideris M, Adams K, Moorhead J, Diaz-Cano S, Bjarnason I, Papagrigoriadis S. BRAF V600E mutation in colorectal cancer is associated with right-sided tumours and iron deficiency anaemia. Anticancer Res. 2015;35(4):2345–50.PubMed Sideris M, Adams K, Moorhead J, Diaz-Cano S, Bjarnason I, Papagrigoriadis S. BRAF V600E mutation in colorectal cancer is associated with right-sided tumours and iron deficiency anaemia. Anticancer Res. 2015;35(4):2345–50.PubMed
Metadata
Title
BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies
Authors
Nadia Trivieri
Riccardo Pracella
Maria Grazia Cariglia
Concetta Panebianco
Paola Parrella
Alberto Visioli
Fabrizio Giani
Amata Amy Soriano
Chiara Barile
Giuseppe Canistro
Tiziana Pia Latiano
Lucia Dimitri
Francesca Bazzocchi
Dario Cassano
Angelo L. Vescovi
Valerio Pazienza
Elena Binda
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2020
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01801-w

Other articles of this Issue 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine