Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Pharmacokinetics | Research

Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B

Authors: Lawrence H. Cheung, Yunli Zhao, Ana Alvarez-Cienfuegos, Khalid A. Mohamedali, Yu J. Cao, Walter N. Hittelman, Michael G. Rosenblum

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Immunotherapeutic approaches designed to augment T and B cell mediated killing of tumor cells has met with clinical success in recent years suggesting tremendous potential for treatment in a broad spectrum of tumor types. After complex recognition of target cells by T and B cells, delivery of the serine protease granzyme B (GrB) to tumor cells comprises the cytotoxic insult resulting in a well-characterized, multimodal apoptotic cascade.

Methods

We designed a recombinant fusion construct, GrB-Fc-4D5, composed of a humanized anti-HER2 scFv fused to active GrB for recognition of tumor cells and internal delivery of GrB, simulating T and B cell therapy. We assessed the construct’s antigen-binding specificity and GrB enzymatic activity, as well as in vitro cytotoxicity and internalization into target and control cells. We also assessed pharmacokinetic and toxicology parameters in vivo.

Results

GrB-Fc-4D5 was highly cytotoxic to Her2 positive cells such as SKBR3, MCF7 and MDA-MB-231 with IC50 values of 56, 99 and 27 nM, respectively, and against a panel of HER2+ cell lines regardless of endogenous expression levels of the PI-9 inhibitor. Contemporaneous studies with Kadcyla demonstrated similar levels of in vitro activity against virtually all cells tested. GrB-Fc-4D5 internalized rapidly into target SKOV3 cells within 1 h of exposure rapidly delivering GrB to the cytoplasmic compartment. In keeping with its relatively high molecular weight (160 kDa), the construct demonstrated a terminal-phase serum half-life in mice of 39.2 h. Toxicity studies conducted on BALB/c mice demonstrated no statistically significant changes in SGPT, SGOT or serum LDH. Histopathologic analysis of tissues from treated mice demonstrated no drug-related changes in any tissues examined.

Conclusion

GrB-Fc-4D5 shows excellent, specific cytotoxicity and demonstrates no significant toxicity in normal, antigen-negative murine models. This construct constitutes a novel approach against HER2-expressing tumors and is an excellent candidate for further development.
Literature
1.
go back to reference Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol. 2015;67(2 Pt A):46–57.PubMedCrossRef Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol. 2015;67(2 Pt A):46–57.PubMedCrossRef
2.
go back to reference Ekkirala CR, Cappello P, Accolla RS, Giovarelli M, Romero I, Garrido C, et al. Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response. Pancreas. 2014;43(7):1066–72.PubMedCrossRef Ekkirala CR, Cappello P, Accolla RS, Giovarelli M, Romero I, Garrido C, et al. Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response. Pancreas. 2014;43(7):1066–72.PubMedCrossRef
3.
4.
go back to reference Lu M, Huang B, Hanash SM, Onuchic JN, Ben-Jacob E. Modeling putative therapeutic implications of exosome exchange between tumor and immune cells. Proc Natl Acad Sci U S A. 2014;111(40):E4165–74.PubMedPubMedCentralCrossRef Lu M, Huang B, Hanash SM, Onuchic JN, Ben-Jacob E. Modeling putative therapeutic implications of exosome exchange between tumor and immune cells. Proc Natl Acad Sci U S A. 2014;111(40):E4165–74.PubMedPubMedCentralCrossRef
6.
go back to reference Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222(1):11–20.PubMedCrossRef Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222(1):11–20.PubMedCrossRef
7.
go back to reference Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–74.PubMedCrossRef Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–74.PubMedCrossRef
8.
go back to reference Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol. 2016;58:52–8.PubMedPubMedCentralCrossRef Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol. 2016;58:52–8.PubMedPubMedCentralCrossRef
9.
go back to reference Ebstein F, Keller M, Paschen A, Walden P, Seeger M, Burger E, et al. Exposure to Melan-a/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS). Sci Rep. 2016;6:25208.PubMedPubMedCentralCrossRef Ebstein F, Keller M, Paschen A, Walden P, Seeger M, Burger E, et al. Exposure to Melan-a/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS). Sci Rep. 2016;6:25208.PubMedPubMedCentralCrossRef
10.
go back to reference Page DB, Hulett TW, Hilton TL, Hu HM, Urba WJ, Fox BA. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine. J Immunother Cancer. 2016;4:25.PubMedPubMedCentralCrossRef Page DB, Hulett TW, Hilton TL, Hu HM, Urba WJ, Fox BA. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine. J Immunother Cancer. 2016;4:25.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Andrade F, Casciola-Rosen LA, Rosen A. Granzyme B-induced cell death. Acta Haematol. 2004;111(1–2):28–41.PubMedCrossRef Andrade F, Casciola-Rosen LA, Rosen A. Granzyme B-induced cell death. Acta Haematol. 2004;111(1–2):28–41.PubMedCrossRef
13.
go back to reference Andrade F, Roy S, Nicholson D, Thornberry N, Rosen A, Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity. 1998;8(4):451–60.PubMedCrossRef Andrade F, Roy S, Nicholson D, Thornberry N, Rosen A, Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity. 1998;8(4):451–60.PubMedCrossRef
14.
go back to reference Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ, et al. Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Curr Biol. 1996;6(7):897–9.PubMedCrossRef Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ, et al. Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Curr Biol. 1996;6(7):897–9.PubMedCrossRef
15.
go back to reference Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–78.PubMed Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–78.PubMed
16.
go back to reference Trapani JA, Browne KA, Smyth MJ, Jans DA. Localization of granzyme B in the nucleus. A putative role in the mechanism of cytotoxic lymphocyte-mediated apoptosis. J Biol Chem. 1996;271(8):4127–33.PubMedCrossRef Trapani JA, Browne KA, Smyth MJ, Jans DA. Localization of granzyme B in the nucleus. A putative role in the mechanism of cytotoxic lymphocyte-mediated apoptosis. J Biol Chem. 1996;271(8):4127–33.PubMedCrossRef
17.
go back to reference Trapani JA, Smyth MJ, Apostolidis VA, Dawson M, Browne KA. Granule serine proteases are normal nuclear constituents of natural killer cells. J Biol Chem. 1994;269(28):18359–65.PubMed Trapani JA, Smyth MJ, Apostolidis VA, Dawson M, Browne KA. Granule serine proteases are normal nuclear constituents of natural killer cells. J Biol Chem. 1994;269(28):18359–65.PubMed
18.
go back to reference Cao Y, Mohamedali KA, Marks JW, Cheung LH, Hittelman WN, Rosenblum MG. Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu. Mol Cancer Ther. 2013;12(6):979–91.PubMedPubMedCentralCrossRef Cao Y, Mohamedali KA, Marks JW, Cheung LH, Hittelman WN, Rosenblum MG. Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu. Mol Cancer Ther. 2013;12(6):979–91.PubMedPubMedCentralCrossRef
19.
go back to reference Kanatani I, Lin X, Yuan X, Manorek G, Shang X, Cheung LH, et al. Targeting granzyme B to tumor cells using a yoked human chorionic gonadotropin. Cancer Chemother Pharmacol. 2011;68(4):979–90.PubMedPubMedCentralCrossRef Kanatani I, Lin X, Yuan X, Manorek G, Shang X, Cheung LH, et al. Targeting granzyme B to tumor cells using a yoked human chorionic gonadotropin. Cancer Chemother Pharmacol. 2011;68(4):979–90.PubMedPubMedCentralCrossRef
20.
go back to reference Liu Y, Cheung LH, Hittelman WN, Rosenblum MG. Targeted delivery of human pro-apoptotic enzymes to tumor cells: in vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther. 2003;2(12):1341–50.PubMed Liu Y, Cheung LH, Hittelman WN, Rosenblum MG. Targeted delivery of human pro-apoptotic enzymes to tumor cells: in vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther. 2003;2(12):1341–50.PubMed
21.
go back to reference Liu Y, Cheung LH, Thorpe P, Rosenblum MG. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF)121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther. 2003;2(10):949–59.PubMed Liu Y, Cheung LH, Thorpe P, Rosenblum MG. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF)121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther. 2003;2(10):949–59.PubMed
22.
go back to reference Liu Y, Zhang W, Niu T, Cheung LH, Munshi A, Meyn RE Jr, et al. Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia. 2006;8(2):125–35.PubMedPubMedCentralCrossRef Liu Y, Zhang W, Niu T, Cheung LH, Munshi A, Meyn RE Jr, et al. Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia. 2006;8(2):125–35.PubMedPubMedCentralCrossRef
23.
go back to reference Mohamedali KA, Cao Y, Cheung LH, Hittelman WN, Rosenblum MG. The functionalized human serine protease granzyme B/VEGF(1)(2)(1) targets tumor vasculature and ablates tumor growth. Mol Cancer Ther. 2013;12(10):2055–66.PubMedPubMedCentralCrossRef Mohamedali KA, Cao Y, Cheung LH, Hittelman WN, Rosenblum MG. The functionalized human serine protease granzyme B/VEGF(1)(2)(1) targets tumor vasculature and ablates tumor growth. Mol Cancer Ther. 2013;12(10):2055–66.PubMedPubMedCentralCrossRef
25.
go back to reference Rosenblum MG, Barth S. Development of novel, highly cytotoxic fusion constructs containing granzyme B: unique mechanisms and functions. Curr Pharm Des. 2009;15(23):2676–92.PubMedCrossRef Rosenblum MG, Barth S. Development of novel, highly cytotoxic fusion constructs containing granzyme B: unique mechanisms and functions. Curr Pharm Des. 2009;15(23):2676–92.PubMedCrossRef
26.
go back to reference Zhou H, Mohamedali KA, Gonzalez-Angulo AM, Cao Y, Migliorini M, Cheung LH, et al. Development of human serine protease-based therapeutics targeting Fn14 and identification of Fn14 as a new target overexpressed in TNBC. Mol Cancer Ther. 2014;13(11):2688–705.PubMedPubMedCentralCrossRef Zhou H, Mohamedali KA, Gonzalez-Angulo AM, Cao Y, Migliorini M, Cheung LH, et al. Development of human serine protease-based therapeutics targeting Fn14 and identification of Fn14 as a new target overexpressed in TNBC. Mol Cancer Ther. 2014;13(11):2688–705.PubMedPubMedCentralCrossRef
27.
go back to reference Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, et al. Immunotoxins in cancer therapy: review and update. Int Rev Immunol. 2017;36(4):207–19.PubMedCrossRef Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, et al. Immunotoxins in cancer therapy: review and update. Int Rev Immunol. 2017;36(4):207–19.PubMedCrossRef
28.
go back to reference Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: a new tool for cancer therapy. Tumour Biol. 2017;39(2):1010428317692226.PubMedCrossRef Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: a new tool for cancer therapy. Tumour Biol. 2017;39(2):1010428317692226.PubMedCrossRef
30.
go back to reference Jerjian TV, Glode AE, Thompson LA, O'Bryant CL. Antibody-drug conjugates: a clinical pharmacy perspective on an emerging Cancer therapy. Pharmacotherapy. 2016;36(1):99–116.PubMedCrossRef Jerjian TV, Glode AE, Thompson LA, O'Bryant CL. Antibody-drug conjugates: a clinical pharmacy perspective on an emerging Cancer therapy. Pharmacotherapy. 2016;36(1):99–116.PubMedCrossRef
31.
go back to reference Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv. 2016;13(3):401–19.PubMedCrossRef Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv. 2016;13(3):401–19.PubMedCrossRef
33.
go back to reference Amoury M, Kolberg K, Pham AT, Hristodorov D, Mladenov R, Di Fiore S, et al. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett. 2016;372(2):201–9.PubMedCrossRef Amoury M, Kolberg K, Pham AT, Hristodorov D, Mladenov R, Di Fiore S, et al. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett. 2016;372(2):201–9.PubMedCrossRef
34.
go back to reference Caldas H, Jaynes FO, Boyer MW, Hammond S, Altura RA. Survivin and Granzyme B-induced apoptosis, a novel anticancer therapy. Mol Cancer Ther. 2006;5(3):693–703.PubMedCrossRef Caldas H, Jaynes FO, Boyer MW, Hammond S, Altura RA. Survivin and Granzyme B-induced apoptosis, a novel anticancer therapy. Mol Cancer Ther. 2006;5(3):693–703.PubMedCrossRef
35.
go back to reference Lv XZ, Zheng MY, Lin ZQ, Zhao M, Wang H, Zeng WS. Granzyme B-truncated VEGF fusion protein represses angiogenesis and tumor growth of OSCC. Oral Dis. 2016;22(7):688–96.PubMedCrossRef Lv XZ, Zheng MY, Lin ZQ, Zhao M, Wang H, Zeng WS. Granzyme B-truncated VEGF fusion protein represses angiogenesis and tumor growth of OSCC. Oral Dis. 2016;22(7):688–96.PubMedCrossRef
36.
go back to reference Niesen J, Hehmann-Titt G, Woitok M, Fendel R, Barth S, Fischer R, et al. A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett. 2016;374(2):229–40.PubMedCrossRef Niesen J, Hehmann-Titt G, Woitok M, Fendel R, Barth S, Fischer R, et al. A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett. 2016;374(2):229–40.PubMedCrossRef
37.
go back to reference Oberoi P, Jabulowsky RA, Bahr-Mahmud H, Wels WS. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells. PLoS One. 2013;8(4):e61267.PubMedPubMedCentralCrossRef Oberoi P, Jabulowsky RA, Bahr-Mahmud H, Wels WS. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells. PLoS One. 2013;8(4):e61267.PubMedPubMedCentralCrossRef
38.
go back to reference Schiffer S, Hansen HP, Hehmann-Titt G, Huhn M, Fischer R, Barth S, et al. Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J. 2013;3:e106.PubMedPubMedCentralCrossRef Schiffer S, Hansen HP, Hehmann-Titt G, Huhn M, Fischer R, Barth S, et al. Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J. 2013;3:e106.PubMedPubMedCentralCrossRef
39.
go back to reference Schiffer S, Letzian S, Jost E, Mladenov R, Hristodorov D, Huhn M, et al. Granzyme M as a novel effector molecule for human cytolytic fusion proteins: CD64-specific cytotoxicity of gm-H22(scFv) against leukemic cells. Cancer Lett. 2013;341(2):178–85.PubMedCrossRef Schiffer S, Letzian S, Jost E, Mladenov R, Hristodorov D, Huhn M, et al. Granzyme M as a novel effector molecule for human cytolytic fusion proteins: CD64-specific cytotoxicity of gm-H22(scFv) against leukemic cells. Cancer Lett. 2013;341(2):178–85.PubMedCrossRef
40.
go back to reference Zhang L, Zhao J, Wang Z, Wen WH, Zhang YH, Wang CJ, et al. Construction and expression of recombinant antibody/granzyme B containing truncated translocating peptide. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2003;19(5):434–6.PubMed Zhang L, Zhao J, Wang Z, Wen WH, Zhang YH, Wang CJ, et al. Construction and expression of recombinant antibody/granzyme B containing truncated translocating peptide. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2003;19(5):434–6.PubMed
41.
go back to reference Weidle UH, Georges G, Brinkmann U. Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics Proteomics. 2012;9(3):119–33.PubMed Weidle UH, Georges G, Brinkmann U. Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics Proteomics. 2012;9(3):119–33.PubMed
42.
go back to reference Burris HA. Trastuzumab Emtansine (T-DM1): Hitching a Ride on a Therapeutic Antibody. Am Soc Clin Oncol Educ Book / ASCO Am Soc Clin Oncol Educ Meeting. 2012;32:159–61. Burris HA. Trastuzumab Emtansine (T-DM1): Hitching a Ride on a Therapeutic Antibody. Am Soc Clin Oncol Educ Book / ASCO Am Soc Clin Oncol Educ Meeting. 2012;32:159–61.
43.
go back to reference Emde A, Kostler WJ, Yarden Y. Association of R, Oncology of the Mediterranean a. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer. Crit Rev Oncol Hematol. 2012;84(Suppl 1):e49–57.PubMedCrossRef Emde A, Kostler WJ, Yarden Y. Association of R, Oncology of the Mediterranean a. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer. Crit Rev Oncol Hematol. 2012;84(Suppl 1):e49–57.PubMedCrossRef
44.
go back to reference Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res. 2010;16(19):4769–78.PubMedCrossRef Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res. 2010;16(19):4769–78.PubMedCrossRef
46.
go back to reference Ayyar BV, Arora S, O'Kennedy R. Coming-of-age of antibodies in Cancer therapeutics. Trends Pharmacol Sci. 2016;37(12):1009–28.PubMedCrossRef Ayyar BV, Arora S, O'Kennedy R. Coming-of-age of antibodies in Cancer therapeutics. Trends Pharmacol Sci. 2016;37(12):1009–28.PubMedCrossRef
47.
go back to reference Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017;122:2–19.PubMedCrossRef Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017;122:2–19.PubMedCrossRef
48.
go back to reference Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-based Cancer therapy: successful agents and novel approaches. Int Rev Cell Mol Biol. 2017;331:289–383.PubMedCrossRef Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-based Cancer therapy: successful agents and novel approaches. Int Rev Cell Mol Biol. 2017;331:289–383.PubMedCrossRef
49.
50.
go back to reference Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27(12):2168–72.PubMedCrossRef Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27(12):2168–72.PubMedCrossRef
51.
go back to reference Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–9.PubMedPubMedCentralCrossRef Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–9.PubMedPubMedCentralCrossRef
52.
go back to reference Haddley K. Trastuzumab emtansine for the treatment of HER2-positive metastatic breast cancer. Drugs Today (Barc). 2013;49(11):701–15.CrossRef Haddley K. Trastuzumab emtansine for the treatment of HER2-positive metastatic breast cancer. Drugs Today (Barc). 2013;49(11):701–15.CrossRef
53.
go back to reference Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Mol Med. 2013;18:1473–9.PubMedCrossRef Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Mol Med. 2013;18:1473–9.PubMedCrossRef
54.
go back to reference Elsada A, Doss S, Robertson J, Adam EJ. NICE guidance on trastuzumab emtansine for HER2-positive advanced breast cancer. Lancet Oncol. 2016;17(2):143–4.PubMedCrossRef Elsada A, Doss S, Robertson J, Adam EJ. NICE guidance on trastuzumab emtansine for HER2-positive advanced breast cancer. Lancet Oncol. 2016;17(2):143–4.PubMedCrossRef
55.
go back to reference Fabi A, De Laurentiis M, Caruso M, Valle E, Moscetti L, Santini D, et al. Efficacy and safety of T-DM1 in the 'common-practice' of HER2+ advanced breast cancer setting: a multicenter study. Oncotarget. 2017;8(38):64481–9.PubMedPubMedCentralCrossRef Fabi A, De Laurentiis M, Caruso M, Valle E, Moscetti L, Santini D, et al. Efficacy and safety of T-DM1 in the 'common-practice' of HER2+ advanced breast cancer setting: a multicenter study. Oncotarget. 2017;8(38):64481–9.PubMedPubMedCentralCrossRef
56.
go back to reference Krop IE, Modi S, LoRusso PM, Pegram M, Guardino E, Althaus B, et al. Phase 1b/2a study of trastuzumab emtansine (T-DM1), paclitaxel, and pertuzumab in HER2-positive metastatic breast cancer. Breast Cancer Res. 2016;18(1):34.PubMedPubMedCentralCrossRef Krop IE, Modi S, LoRusso PM, Pegram M, Guardino E, Althaus B, et al. Phase 1b/2a study of trastuzumab emtansine (T-DM1), paclitaxel, and pertuzumab in HER2-positive metastatic breast cancer. Breast Cancer Res. 2016;18(1):34.PubMedPubMedCentralCrossRef
57.
go back to reference Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188.PubMedCrossRef Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188.PubMedCrossRef
58.
go back to reference Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRef Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRef
60.
go back to reference Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 2017;108(7):1458–68.PubMedPubMedCentralCrossRef Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 2017;108(7):1458–68.PubMedPubMedCentralCrossRef
61.
go back to reference Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res. 2017;19(1):110.PubMedPubMedCentralCrossRef Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res. 2017;19(1):110.PubMedPubMedCentralCrossRef
62.
go back to reference de Melo GD, Jardim DL, Marchesi MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget. 2016;7(39):64431–46. de Melo GD, Jardim DL, Marchesi MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget. 2016;7(39):64431–46.
63.
go back to reference Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to Trastuzumab Emtansine (T-DM1). Mol Cancer Ther. 2018;17(1):243–53.PubMedCrossRef Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to Trastuzumab Emtansine (T-DM1). Mol Cancer Ther. 2018;17(1):243–53.PubMedCrossRef
64.
go back to reference Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res. 2005;304(2):604–19.PubMedCrossRef Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res. 2005;304(2):604–19.PubMedCrossRef
65.
go back to reference LeCher JC, Nowak SJ, McMurry JL. Breaking in and busting out: cell-penetrating peptides and the endosomal escape problem. Biomol Concepts. 2017;8(3–4):131–41.PubMedPubMedCentral LeCher JC, Nowak SJ, McMurry JL. Breaking in and busting out: cell-penetrating peptides and the endosomal escape problem. Biomol Concepts. 2017;8(3–4):131–41.PubMedPubMedCentral
66.
go back to reference Diessner J, Bruttel V, Stein RG, Horn E, Hausler SF, Dietl J, et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis. 2014;5:e1149.PubMedPubMedCentralCrossRef Diessner J, Bruttel V, Stein RG, Horn E, Hausler SF, Dietl J, et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis. 2014;5:e1149.PubMedPubMedCentralCrossRef
67.
go back to reference Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 2017;77(19):5374–83.PubMedPubMedCentralCrossRef Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 2017;77(19):5374–83.PubMedPubMedCentralCrossRef
68.
go back to reference Jernstrom S, Hongisto V, Leivonen SK, Due EU, Tadele DS, Edgren H, et al. Drug-screening and genomic analyses of HER2-positive breast cancer cell lines reveal predictors for treatment response. Breast Cancer (Dove Med Press). 2017;9:185–98. Jernstrom S, Hongisto V, Leivonen SK, Due EU, Tadele DS, Edgren H, et al. Drug-screening and genomic analyses of HER2-positive breast cancer cell lines reveal predictors for treatment response. Breast Cancer (Dove Med Press). 2017;9:185–98.
69.
go back to reference Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical analysis in breast Cancer cell lines. Breast Cancer (Auckl). 2010;4:35–41.PubMedCentral Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical analysis in breast Cancer cell lines. Breast Cancer (Auckl). 2010;4:35–41.PubMedCentral
70.
go back to reference Chen L, Zeng W, Zheng H. Granzyme B-VEGF receptor-binding peptide fusion protein expressed in B. longum induces apoptosis of KDR-positive cells. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32(7):1059–63.PubMed Chen L, Zeng W, Zheng H. Granzyme B-VEGF receptor-binding peptide fusion protein expressed in B. longum induces apoptosis of KDR-positive cells. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32(7):1059–63.PubMed
71.
go back to reference Dalken B, Giesubel U, Knauer SK, Wels WS. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ. 2006;13(4):576–85.PubMedCrossRef Dalken B, Giesubel U, Knauer SK, Wels WS. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ. 2006;13(4):576–85.PubMedCrossRef
72.
go back to reference Kapelski S, de Almeida M, Fischer R, Barth S, Fendel R. Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein. Antimicrob Agents Chemother. 2015;59(1):669–72.PubMedCrossRef Kapelski S, de Almeida M, Fischer R, Barth S, Fendel R. Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein. Antimicrob Agents Chemother. 2015;59(1):669–72.PubMedCrossRef
73.
go back to reference Schiffer S, Rosinke R, Jost E, Hehmann-Titt G, Huhn M, Melmer G, et al. Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int J Cancer. 2014;135(6):1497–508.PubMedCrossRef Schiffer S, Rosinke R, Jost E, Hehmann-Titt G, Huhn M, Melmer G, et al. Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int J Cancer. 2014;135(6):1497–508.PubMedCrossRef
74.
go back to reference Stahnke B, Thepen T, Stocker M, Rosinke R, Jost E, Fischer R, et al. Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther. 2008;7(9):2924–32.PubMedCrossRef Stahnke B, Thepen T, Stocker M, Rosinke R, Jost E, Fischer R, et al. Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther. 2008;7(9):2924–32.PubMedCrossRef
75.
go back to reference Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–64.PubMedCrossRef Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–64.PubMedCrossRef
76.
go back to reference Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, et al. The major human and mouse granzymes are structurally and functionally divergent. J Cell Biol. 2006;175(4):619–30.PubMedPubMedCentralCrossRef Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, et al. The major human and mouse granzymes are structurally and functionally divergent. J Cell Biol. 2006;175(4):619–30.PubMedPubMedCentralCrossRef
Metadata
Title
Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B
Authors
Lawrence H. Cheung
Yunli Zhao
Ana Alvarez-Cienfuegos
Khalid A. Mohamedali
Yu J. Cao
Walter N. Hittelman
Michael G. Rosenblum
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1333-6

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine