Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

Cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1

Authors: Jinlan Gao, Chenyang Zhao, Qi Liu, Xiaoyu Hou, Sen Li, Xuesha Xing, Chunhua Yang, Yang Luo

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

Gastric cancer is one of the most common malignant tumors. Cyclin G2 has been shown to be associated with the development of multiple types of tumors, but its underlying mechanisms in gastric tumors is not well-understood. The aim of this study is to investigate the role and the underlying mechanisms of cyclin G2 on Wnt/β-catenin signaling in gastric cancer.

Methods

Real-time PCR, immunohistochemistry and in silico assay were used to determine the expression of cyclin G2 in gastric cancer. TCGA datasets were used to evaluate the association between cyclin G2 expression and the prognostic landscape of gastric cancers. The effects of ectopic and endogenous cyclin G2 on the proliferation and migration of gastric cancer cells were assessed using the MTS assay, colony formation assay, cell cycle assay, wound healing assay and transwell assay. Moreover, a xenograft model and a metastasis model of nude mice was used to determine the influence of cyclin G2 on gastric tumor growth and migration in vivo. The effects of cyclin G2 expression on Wnt/β-catenin signaling were explored using a TOPFlash luciferase reporter assay, and the molecular mechanisms involved were investigated using immunoblots assay, yeast two-hybrid screening, immunoprecipitation and Duolink in situ PLA. Ccng2−/− mice were generated to further confirm the inhibitory effect of cyclin G2 on Wnt/β-catenin signaling in vivo. Furthermore, GSK-3β inhibitors were utilized to explore the role of Wnt/β-catenin signaling in the suppression effect of cyclin G2 on gastric cancer cell proliferation and migration.

Results

We found that cyclin G2 levels were decreased in gastric cancer tissues and were associated with tumor size, migration and poor differentiation status. Moreover, overexpression of cyclin G2 attenuated tumor growth and metastasis both in vitro and in vivo. Dpr1 was identified as a cyclin G2-interacting protein which was required for the cyclin G2-mediated inhibition of β-catenin expression. Mechanically, cyclin G2 impacted the activity of CKI to phosphorylate Dpr1, which has been proved to be a protein that acts as a suppressor of Wnt/β-catenin signaling when unphosphorylated. Furthermore, GSK-3β inhibitors abolished the cyclin G2-induced suppression of cell proliferation and migration.

Conclusions

This study demonstrates that cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer. Statistics, 2012. CA a cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer. Statistics, 2012. CA a cancer J Clin. 2015;65:87–108.CrossRef
2.
go back to reference Yu J, Liang Q, Wang J, Wang K, Gao J, Zhang J, et al. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene. 2017;36:182–93.CrossRef Yu J, Liang Q, Wang J, Wang K, Gao J, Zhang J, et al. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene. 2017;36:182–93.CrossRef
3.
go back to reference Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5:84–102.CrossRef Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5:84–102.CrossRef
4.
go back to reference Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, et al. Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62:3503–6.PubMed Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, et al. Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62:3503–6.PubMed
5.
go back to reference Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M, Wahl AF. Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem. 1996;271:6050–61.CrossRef Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M, Wahl AF. Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem. 1996;271:6050–61.CrossRef
6.
go back to reference Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004;24:2181–9.CrossRef Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004;24:2181–9.CrossRef
7.
go back to reference Choi MG, Noh JH, An JY, Hong SK, Park SB, Baik YH, et al. Expression levels of cyclin G2, but not cyclin E, correlate with gastric cancer progression. J Surg Res. 2009;157:168–74.CrossRef Choi MG, Noh JH, An JY, Hong SK, Park SB, Baik YH, et al. Expression levels of cyclin G2, but not cyclin E, correlate with gastric cancer progression. J Surg Res. 2009;157:168–74.CrossRef
8.
go back to reference Gao J, Liu Q, Liu X, Zhang Y, Wang S, Luo Y. Mutation analysis of the negative regulator cyclin G2 in gastric cancer. Afi J Bio technol. 2011;10:14618–24. Gao J, Liu Q, Liu X, Zhang Y, Wang S, Luo Y. Mutation analysis of the negative regulator cyclin G2 in gastric cancer. Afi J Bio technol. 2011;10:14618–24.
9.
go back to reference Bergqvist M, Brattström D, Brodin D, Lindkvist A, Dreilich M, Wagenius G. Genes associated with telomerase activity levels in esophageal carcinoma cell lines. Dis Esphagos. 2006;19:20–3.CrossRef Bergqvist M, Brattström D, Brodin D, Lindkvist A, Dreilich M, Wagenius G. Genes associated with telomerase activity levels in esophageal carcinoma cell lines. Dis Esphagos. 2006;19:20–3.CrossRef
10.
go back to reference Fu G, Peng C. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene. 2011;30:3953–66.CrossRef Fu G, Peng C. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene. 2011;30:3953–66.CrossRef
11.
go back to reference Zvibel I, Wagner A, Pasmanik-Chor M, Varol C, Oron-Karni V, Santo EM, et al. Transcriptional profiling identifies genes induced by hepatocyte-derived extracellular matrix in metastatic human colorectal cancer cell lines. Clin Exp Metastasis. 2013;30:189–200.CrossRef Zvibel I, Wagner A, Pasmanik-Chor M, Varol C, Oron-Karni V, Santo EM, et al. Transcriptional profiling identifies genes induced by hepatocyte-derived extracellular matrix in metastatic human colorectal cancer cell lines. Clin Exp Metastasis. 2013;30:189–200.CrossRef
12.
go back to reference Li W, Liu G, Yu F, Xiang X, Lu Y, Xiao H, et al. CCNG2 suppressor biological effects on thyroid cancer cell through promotion of CDK2 degradation. Asian Pacific J Cancer Prev. 2013;14:6165–71. Li W, Liu G, Yu F, Xiang X, Lu Y, Xiao H, et al. CCNG2 suppressor biological effects on thyroid cancer cell through promotion of CDK2 degradation. Asian Pacific J Cancer Prev. 2013;14:6165–71.
13.
go back to reference Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, et al. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012;13:7542–52.CrossRef Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, et al. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012;13:7542–52.CrossRef
14.
go back to reference Kim Y, Shintani S, Kohno Y, Zhang R, Wong DT. Cyclin G2 dysregulation in human Oral Cancer. Cancer Res. 2004;64:8980–6.CrossRef Kim Y, Shintani S, Kohno Y, Zhang R, Wong DT. Cyclin G2 dysregulation in human Oral Cancer. Cancer Res. 2004;64:8980–6.CrossRef
15.
go back to reference Cui DW, Cheng YJ, Jing SW, Sun GG. Effect of cyclin G2 on proliferative ability of prostate cancer PC-3 cell. Tumor Biol. 2014;35:3017–24.CrossRef Cui DW, Cheng YJ, Jing SW, Sun GG. Effect of cyclin G2 on proliferative ability of prostate cancer PC-3 cell. Tumor Biol. 2014;35:3017–24.CrossRef
16.
go back to reference Clevers H. Review Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80. Clevers H. Review Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.
17.
go back to reference Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol. 1998;18:1248–56.CrossRef Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol. 1998;18:1248–56.CrossRef
18.
go back to reference Li Q, Ye L, Guo W, Wang M, Huang S, Peng X. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway. J Exp Clin Canc Res. 2017;36:85.CrossRef Li Q, Ye L, Guo W, Wang M, Huang S, Peng X. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway. J Exp Clin Canc Res. 2017;36:85.CrossRef
19.
go back to reference Wu D, Pan W. GSK3 : a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2009;35:161–8.CrossRef Wu D, Pan W. GSK3 : a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2009;35:161–8.CrossRef
20.
go back to reference Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of B-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.CrossRef Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of B-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.CrossRef
21.
go back to reference MacDonald BT, Tamai K, He X. Wnt β-catenin signaling components mechanisms and disease. Development. 2009;135:367–75. MacDonald BT, Tamai K, He X. Wnt β-catenin signaling components mechanisms and disease. Development. 2009;135:367–75.
22.
go back to reference Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135:367–75.CrossRef Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135:367–75.CrossRef
23.
go back to reference Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, et al. Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem. 2008;283:35679–88.CrossRef Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, et al. Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem. 2008;283:35679–88.CrossRef
24.
go back to reference Chen H, Liu L, Ma B, Ma TM, Hou JJ, Xie GM, et al. Protein kinase A-mediated 14-3-3 association impedes human Dapper1 to promote Dishevelled degradation. J Biol Chem. 2011;286:14870–80. Chen H, Liu L, Ma B, Ma TM, Hou JJ, Xie GM, et al. Protein kinase A-mediated 14-3-3 association impedes human Dapper1 to promote Dishevelled degradation. J Biol Chem. 2011;286:14870–80.
25.
go back to reference Zhang L, Gao X, Wen J, Ning Y, Chen YG. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem. 2006;281:8607–12. Zhang L, Gao X, Wen J, Ning Y, Chen YG. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem. 2006;281:8607–12.
26.
go back to reference Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280:33132–40. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280:33132–40.
27.
go back to reference Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.
28.
go back to reference Grabsch HI, Tan P. Gastric cancer pathology and underlying molecular mechanisms. Dig Surg. 2013;30:150–8. Grabsch HI, Tan P. Gastric cancer pathology and underlying molecular mechanisms. Dig Surg. 2013;30:150–8.
29.
go back to reference Yu Y, Yan W, Liu X, Jia Y, Cao B, Yu Y, et al. DACT2 is frequently methylated in human gastric cancer and methylation of DACT2 activated Wnt signaling. Am J Cancer Res. 2014;4:710–24. Yu Y, Yan W, Liu X, Jia Y, Cao B, Yu Y, et al. DACT2 is frequently methylated in human gastric cancer and methylation of DACT2 activated Wnt signaling. Am J Cancer Res. 2014;4:710–24.
30.
go back to reference Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene. 2014;33:2737–47. Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene. 2014;33:2737–47.
31.
go back to reference Yue Z, Fan Y, Jing J, Zheng F, Ping T, Ling Y et al. RACK1 suppresses gastric tumorigenesis by stabilizing the β-Catenin destruction complex. Gastroenterlogy 2012; 142: 812–23. Yue Z,  Fan Y, Jing J, Zheng F, Ping T, Ling Y et al. RACK1 suppresses gastric tumorigenesis by stabilizing the β-Catenin destruction complex. Gastroenterlogy 2012; 142: 812–23.
32.
go back to reference Gao J, Liu Q, Liu X, Ji C, Qu S, Wang S et al. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling. PLoS One 2014; 9: e89884. Gao J, Liu Q, Liu X, Ji C, Qu S, Wang S et al. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling. PLoS One 2014; 9: e89884.
33.
go back to reference Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM, et al. ONCOMINE: a Cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM, et al. ONCOMINE: a Cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.
34.
go back to reference Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10):e1000676. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10):e1000676.
35.
go back to reference D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45(3):461–9. D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45(3):461–9.
36.
go back to reference Forster S, Gretschel S, Jons T, Yashiro M, Kemmner W. THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol. 2011;24(10):1390–403. Forster S, Gretschel S, Jons T, Yashiro M, Kemmner W. THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol. 2011;24(10):1390–403.
37.
go back to reference Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 2003;14(8):3208–15. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 2003;14(8):3208–15.
38.
go back to reference Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17(7):1850–7. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17(7):1850–7.
39.
go back to reference Liu Q, Li X, Li S, Qu S, Wang Y, Tang Q, et al. Three novel mutations of APC gene in Chinese patients with familial adenomatous polyposis. Tumor Biol. 2016;37:11421–7. Liu Q, Li X, Li S, Qu S, Wang Y, Tang Q, et al. Three novel mutations of APC gene in Chinese patients with familial adenomatous polyposis. Tumor Biol. 2016;37:11421–7.
40.
go back to reference Xu G, Bernaudo S, Fu G, Lee DY, Yang BB, Peng C. Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7. Mol Biol Cell. 2008;9:4968–79. Xu G, Bernaudo S, Fu G, Lee DY, Yang BB, Peng C. Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7. Mol Biol Cell. 2008;9:4968–79.
41.
go back to reference Veeman MT, Ajamete Kaykas SHL, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol. 2003;13:680–5. Veeman MT, Ajamete Kaykas SHL, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol. 2003;13:680–5.
42.
go back to reference Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 2009;38:792–9. Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 2009;38:792–9.
43.
go back to reference Liu Q, Liu X, Gao J, Shi X, Hu X, Wang S, et al. Overexpression of DOC-1R inhibits cell cycle G1/S transition by repressing CDK2 expression and activation. Int J Biol Sci. 2013;9:541–9. Liu Q, Liu X, Gao J, Shi X, Hu X, Wang S, et al. Overexpression of DOC-1R inhibits cell cycle G1/S transition by repressing CDK2 expression and activation. Int J Biol Sci. 2013;9:541–9.
44.
go back to reference Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.
45.
go back to reference Teran E, Branscomb AD, Seeling JM. Dpr acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One. 2009;4:e5522. Teran E, Branscomb AD, Seeling JM. Dpr acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One. 2009;4:e5522.
46.
go back to reference Sineva GS, Pospelov VA. Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell. 2010;102:549–60. Sineva GS, Pospelov VA. Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell. 2010;102:549–60.
47.
go back to reference Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, et al. β- and γ-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ. 1999;10:369–76. Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, et al. β- and γ-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ. 1999;10:369–76.
48.
go back to reference Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, et al. Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling. Oncogene. 2016;35:4816–27. Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, et al. Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling. Oncogene. 2016;35:4816–27.
Metadata
Title
Cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1
Authors
Jinlan Gao
Chenyang Zhao
Qi Liu
Xiaoyu Hou
Sen Li
Xuesha Xing
Chunhua Yang
Yang Luo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0973-2

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine