Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

(Arg)9-SH2 superbinder: a novel promising anticancer therapy to melanoma by blocking phosphotyrosine signaling

Authors: An-dong Liu, Hui Xu, Ya-nan Gao, Dan-ni Luo, Zhao-feng Li, Courtney Voss, Shawn S. C. Li, Xuan Cao

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

Melanoma is a malignant tumor with high misdiagnosis rate and poor prognosis. The bio-targeted therapy is a prevailing method in the treatment of melanoma; however, the accompanying drug resistance is inevitable. SH2 superbinder, a triple-mutant of the Src Homology 2 (SH2) domain, shows potent antitumor ability by replacing natural SH2-containing proteins and blocking multiple pY-based signaling pathways. Polyarginine (Arg)9, a powerful vector for intracellular delivery of large molecules, could transport therapeutic agents across cell membrane. The purpose of this study is to construct (Arg)9-SH2 superbinder and investigate its effects on melanoma cells, expecting to provide potential new approaches for anti-cancer therapy and overcoming the unavoidable drug resistance of single-targeted antitumor agents.

Methods

(Arg)9 and SH2 superbinder were fused to form (Arg)9-SH2 superbinder via genetic engineering. Pull down assay was performed to identify that (Arg)9-SH2 superbinder could capture a wide variety of pY proteins. Immunofluorescence was used to detect the efficiency of (Arg)9-SH2 superbinder entering cells. The proliferation ability was assessed by MTT and colony formation assay. In addition, wound healing and transwell assay were performed to evaluate migration of B16F10, A375 and A375/DDP cells. Moreover, apoptosis caused by (Arg)9-SH2 superbinder was analyzed by flow cytometry-based Annexin V/PI. Furthermore, western blot revealed that (Arg)9-SH2 superbinder influenced some pY-related signaling pathways. Finally, B16F10 xenograft model was established to confirm whether (Arg)9-SH2 superbinder could restrain the growth of tumor.

Results

Our data showed that (Arg)9-SH2 superbinder had the ability to enter melanoma cells effectively and displayed strong affinities for various pY proteins. Furthermore, (Arg)9-SH2 superbinder could repress proliferation, migration and induce apoptosis of melanoma cells by regulating PI3K/AKT, MAPK/ERK and JAK/STAT signaling pathways. Importantly, (Arg)9-SH2 superbinder could significantly inhibit the growth of tumor in mice.

Conclusions

(Arg)9-SH2 superbinder exhibited high affinities for pY proteins, which showed effective anticancer ability by replacing SH2-containing proteins and blocking diverse pY-based pathways. The remarkable ability of (Arg)9-SH2 superbinder to inhibit cancer cell proliferation and tumor growth might open the door to explore the SH2 superbinder as a therapeutic agent for cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nat. 2007;445:851–7.CrossRef Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nat. 2007;445:851–7.CrossRef
2.
go back to reference Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Ronde P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis. 2014;5:e1379.CrossRefPubMedPubMedCentral Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Ronde P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis. 2014;5:e1379.CrossRefPubMedPubMedCentral
3.
go back to reference Liu SM, Lu J, Lee HC, Chung FH, Ma N. miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget. 2014;5:9444–59.PubMedPubMedCentral Liu SM, Lu J, Lee HC, Chung FH, Ma N. miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget. 2014;5:9444–59.PubMedPubMedCentral
4.
go back to reference Gloster HM Jr, Brodland DG. The epidemiology of skin cancer. Dermatol Surg. 1996;22:217–26.PubMed Gloster HM Jr, Brodland DG. The epidemiology of skin cancer. Dermatol Surg. 1996;22:217–26.PubMed
5.
go back to reference Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.CrossRefPubMed Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.CrossRefPubMed
6.
go back to reference Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.CrossRefPubMed Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.CrossRefPubMed
7.
go back to reference Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88.CrossRefPubMed Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88.CrossRefPubMed
8.
go back to reference Johnpulle RA, Johnson DB, Sosman JA. Molecular targeted therapy approaches for BRAF wild-type melanoma. Curr Oncol Rep. 2016;18:6.CrossRefPubMed Johnpulle RA, Johnson DB, Sosman JA. Molecular targeted therapy approaches for BRAF wild-type melanoma. Curr Oncol Rep. 2016;18:6.CrossRefPubMed
9.
go back to reference Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell. 2004;116:191–203.CrossRefPubMed Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell. 2004;116:191–203.CrossRefPubMed
10.
go back to reference DeClue JE, Sadowski I, Martin GS. Pawson T. A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc Natl Acad Sci U S A. 1987;84:9064–8.CrossRefPubMedPubMedCentral DeClue JE, Sadowski I, Martin GS. Pawson T. A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc Natl Acad Sci U S A. 1987;84:9064–8.CrossRefPubMedPubMedCentral
11.
go back to reference Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol. 2016;12:959–66.CrossRefPubMed Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol. 2016;12:959–66.CrossRefPubMed
12.
go back to reference Tinti M, Nardozza AP, Ferrari E, Sacco F, Corallino S, Castagnoli L, et al. The 4G10, pY20 and p-TYR-100 antibody specificity: profiling by peptide microarrays. New Biotechnol. 2012;29:571–7.CrossRef Tinti M, Nardozza AP, Ferrari E, Sacco F, Corallino S, Castagnoli L, et al. The 4G10, pY20 and p-TYR-100 antibody specificity: profiling by peptide microarrays. New Biotechnol. 2012;29:571–7.CrossRef
13.
go back to reference Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nat. 2015;519:102–5.CrossRef Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nat. 2015;519:102–5.CrossRef
14.
go back to reference Deng Z, Dong M, Wang Y, Dong J, Li SS, Zou H, et al. Biphasic affinity chromatographic approach for deep tyrosine Phosphoproteome analysis. Anal Chem. 2017;89:2405–10.CrossRefPubMed Deng Z, Dong M, Wang Y, Dong J, Li SS, Zou H, et al. Biphasic affinity chromatographic approach for deep tyrosine Phosphoproteome analysis. Anal Chem. 2017;89:2405–10.CrossRefPubMed
15.
go back to reference Dong M, Bian Y, Wang Y, Dong J, Yao Y, Deng Z, et al. Sensitive, robust, and cost-effective approach for tyrosine Phosphoproteome analysis. Anal Chem. 2017;89:9307–14.CrossRefPubMed Dong M, Bian Y, Wang Y, Dong J, Yao Y, Deng Z, et al. Sensitive, robust, and cost-effective approach for tyrosine Phosphoproteome analysis. Anal Chem. 2017;89:9307–14.CrossRefPubMed
16.
go back to reference Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, et al. Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal. 2012;5:ra68.CrossRefPubMed Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, et al. Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal. 2012;5:ra68.CrossRefPubMed
17.
go back to reference Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57:637–51.CrossRefPubMed Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57:637–51.CrossRefPubMed
18.
go back to reference Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.CrossRefPubMed Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.CrossRefPubMed
19.
go back to reference Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A, Cardoso MC. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2008;14:469–76.CrossRefPubMed Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A, Cardoso MC. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2008;14:469–76.CrossRefPubMed
20.
go back to reference Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278:585–90.CrossRefPubMed Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278:585–90.CrossRefPubMed
22.
go back to reference Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull. 2011;34:1774–80.CrossRefPubMed Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull. 2011;34:1774–80.CrossRefPubMed
23.
go back to reference Levitzki A. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu Rev Pharmacol Toxicol. 2013;53:161–85.CrossRefPubMed Levitzki A. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu Rev Pharmacol Toxicol. 2013;53:161–85.CrossRefPubMed
24.
go back to reference Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.CrossRefPubMed Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.CrossRefPubMed
25.
go back to reference Saxena R, Dwivedi A. ErbB family receptor inhibitors as therapeutic agents in breast cancer: current status and future clinical perspective. Med Res Rev. 2012;32:166–215.CrossRefPubMed Saxena R, Dwivedi A. ErbB family receptor inhibitors as therapeutic agents in breast cancer: current status and future clinical perspective. Med Res Rev. 2012;32:166–215.CrossRefPubMed
26.
go back to reference Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol. 2011;29:653–8.CrossRefPubMed Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol. 2011;29:653–8.CrossRefPubMed
27.
go back to reference Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.CrossRefPubMed Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.CrossRefPubMed
28.
go back to reference Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67:2497–507.CrossRefPubMedPubMedCentral Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67:2497–507.CrossRefPubMedPubMedCentral
29.
go back to reference Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A. 2010;107:14903–8.CrossRefPubMedPubMedCentral Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A. 2010;107:14903–8.CrossRefPubMedPubMedCentral
30.
go back to reference Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255–63.CrossRefPubMed Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255–63.CrossRefPubMed
31.
go back to reference Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.CrossRefPubMed Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.CrossRefPubMed
33.
go back to reference Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468–73.CrossRefPubMed Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468–73.CrossRefPubMed
34.
go back to reference Borensztejn A, Boissoneau E, Fernandez G, Agnes F, Pret AM. JAK/STAT autocontrol of ligand-producing cell number through apoptosis. Dev. 2013;140:195–204.CrossRef Borensztejn A, Boissoneau E, Fernandez G, Agnes F, Pret AM. JAK/STAT autocontrol of ligand-producing cell number through apoptosis. Dev. 2013;140:195–204.CrossRef
35.
go back to reference Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.CrossRefPubMedPubMedCentral Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.CrossRefPubMedPubMedCentral
36.
go back to reference Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.CrossRefPubMed Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.CrossRefPubMed
37.
go back to reference Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685–9.CrossRefPubMedPubMedCentral Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685–9.CrossRefPubMedPubMedCentral
38.
go back to reference Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20:1965–77.CrossRefPubMed Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20:1965–77.CrossRefPubMed
39.
go back to reference Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012;3:724.CrossRefPubMedPubMedCentral Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012;3:724.CrossRefPubMedPubMedCentral
40.
go back to reference Suzuki S, Dobashi Y, Sakurai H, Nishikawa K, Hanawa M, Ooi A. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer. 2005;103:1265–73.CrossRefPubMed Suzuki S, Dobashi Y, Sakurai H, Nishikawa K, Hanawa M, Ooi A. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer. 2005;103:1265–73.CrossRefPubMed
41.
go back to reference Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Sci. 2003;300:445–52.CrossRef Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Sci. 2003;300:445–52.CrossRef
42.
go back to reference Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer. 2002;38(Suppl 5):S3–10.CrossRefPubMed Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer. 2002;38(Suppl 5):S3–10.CrossRefPubMed
43.
go back to reference Irandoust M, van den Berg TK, Kaspers GJ, Cloos J. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs). Anti Cancer Agents Med Chem. 2009;9:212–20.CrossRef Irandoust M, van den Berg TK, Kaspers GJ, Cloos J. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs). Anti Cancer Agents Med Chem. 2009;9:212–20.CrossRef
44.
go back to reference Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. Sci STKE. 2003;2003:RE12.PubMed Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. Sci STKE. 2003;2003:RE12.PubMed
45.
go back to reference Andaloussi SE, Lehto T, Lundin P, Langel U. Application of PepFect peptides for the delivery of splice-correcting oligonucleotides. Methods Mol Biol. 2011;683:361–73.CrossRefPubMed Andaloussi SE, Lehto T, Lundin P, Langel U. Application of PepFect peptides for the delivery of splice-correcting oligonucleotides. Methods Mol Biol. 2011;683:361–73.CrossRefPubMed
46.
go back to reference Suh JS, Kim KS, Lee JY, Choi YJ, Chung CP, Park YJ. A cell-permeable fusion protein for the mineralization of human dental pulp stem cells. J Dent Res. 2012;91:90–6.CrossRefPubMed Suh JS, Kim KS, Lee JY, Choi YJ, Chung CP, Park YJ. A cell-permeable fusion protein for the mineralization of human dental pulp stem cells. J Dent Res. 2012;91:90–6.CrossRefPubMed
Metadata
Title
(Arg)9-SH2 superbinder: a novel promising anticancer therapy to melanoma by blocking phosphotyrosine signaling
Authors
An-dong Liu
Hui Xu
Ya-nan Gao
Dan-ni Luo
Zhao-feng Li
Courtney Voss
Shawn S. C. Li
Xuan Cao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0812-5

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine