Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Review

The oncogenic neurotrophin receptor tropomyosin-related kinase variant, TrkAIII

Authors: Antonietta Rosella Farina, Lucia Cappabianca, Pierdomenico Ruggeri, Luciana Gneo, Cristina Pellegrini, Maria-Concetta Fargnoli, Andrew Reay Mackay

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Oncogenes derived from the neurotrophin receptor tropomyosin-related kinase TrkA act as drivers in sub-populations of a wide-range of human cancers. This, combined with a recent report that both adult and childhood cancers driven by novel oncogenic TrkA chimeric-fusions exhibit profound, long-lived therapeutic responses to the Trk inhibitor Larotrectinib, highlights the need to improve clinical detection of TrkA oncogene-driven cancers in order to maximise this novel therapeutic potential. Cancers potentially driven by TrkA oncogenes include a proportion of paediatric neuroblastomas (NBs) that express the alternative TrkA splice variant TrkAIII, which exhibits exon 6, 7 and 9 skipping and oncogenic-activity that depends upon deletion of the extracellular D4 Ig-like domain. In contrast to fully spliced TrkA, which exhibits tumour suppressor activity in NB and associates with good prognosis, TrkAIII associates with advanced stage metastatic disease, post therapeutic relapse and worse prognosis, induces malignant transformation of NIH-3T3 cells and exhibits oncogenic activity in NB models. TrkAIII induction in NB cells is stress-regulated by conditions that mimic hypoxia or perturbate the ER with potential to change TrkA tumour-suppressing signals into oncogenic TrkAIII signals within the stressful tumour microenvironment. In contrast to cell surface TrkA, TrkAIII re-localises to intracellular pre-Golgi membranes, centrosomes and mitochondria, within which it exhibits spontaneous ligand-independent activation, triggering a variety of mechanisms that promote tumorigenicity and malignant behaviour, which impact the majority of cancer hallmarks. In this review, we present updates on TrkAIII detection and association with human malignancies, the multiple ways TrkAIII exerts oncogenic activity and potential therapeutic approaches for TrkAIII expressing cancers, with particular reference to NB.
Literature
1.
go back to reference Ruggeri P, Farina AR, Cappabianca L, Ianni N, Ragone M, Merolla S, et al. Neurotrophin and neurotrophin receptor involvement in human neuroblastoma. In: Neuroblastoma, Prof Hiroyuki Shimada (Ed.). InTech, doi:https://doi.org/10.5772/55536. Ruggeri P, Farina AR, Cappabianca L, Ianni N, Ragone M, Merolla S, et al. Neurotrophin and neurotrophin receptor involvement in human neuroblastoma. In: Neuroblastoma, Prof Hiroyuki Shimada (Ed.). InTech, doi:https://​doi.​org/​10.​5772/​55536.
3.
go back to reference Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319:743–8.CrossRefPubMed Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319:743–8.CrossRefPubMed
4.
go back to reference Klein R, Jing S, Namduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–7.CrossRefPubMed Klein R, Jing S, Namduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–7.CrossRefPubMed
5.
go back to reference Coulier F, Kumar R, Ernst M, Klein R, Martin-Zanca D, Barnacid M. Human Trk oncogenes activated by point mutation, in-frame deletion, and duplication of the tyrosine kinase domain. Mol Cell Biol. 1990;10:4202–10.CrossRefPubMedPubMedCentral Coulier F, Kumar R, Ernst M, Klein R, Martin-Zanca D, Barnacid M. Human Trk oncogenes activated by point mutation, in-frame deletion, and duplication of the tyrosine kinase domain. Mol Cell Biol. 1990;10:4202–10.CrossRefPubMedPubMedCentral
6.
go back to reference Greco A, Pierotti MA, Bongarzone I, Pagliardi S, Lanzi C, Della Porta G. Trk-T1 is a novel oncogene formed by the fusion of TPR and Trk genes in human papillary thyroid carcinomas. Oncogene. 1992;7:237–42.PubMed Greco A, Pierotti MA, Bongarzone I, Pagliardi S, Lanzi C, Della Porta G. Trk-T1 is a novel oncogene formed by the fusion of TPR and Trk genes in human papillary thyroid carcinomas. Oncogene. 1992;7:237–42.PubMed
7.
go back to reference Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, et al. The DNA rearrangement that generates the TrkT3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–27.CrossRefPubMedPubMedCentral Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, et al. The DNA rearrangement that generates the TrkT3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–27.CrossRefPubMedPubMedCentral
8.
go back to reference George DJ, Suzuki H, Bova SG, Isaacs JT. Mutational analysis of the TrkA gene in prostate cancer. Prostate. 1998;36:172–80.CrossRefPubMed George DJ, Suzuki H, Bova SG, Isaacs JT. Mutational analysis of the TrkA gene in prostate cancer. Prostate. 1998;36:172–80.CrossRefPubMed
9.
go back to reference Reuther GW, Lambert QT, Caligiuri MA, Der CJ. Identification and characterisation of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol. 2000;20:8655–66.CrossRefPubMedPubMedCentral Reuther GW, Lambert QT, Caligiuri MA, Der CJ. Identification and characterisation of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol. 2000;20:8655–66.CrossRefPubMedPubMedCentral
11.
go back to reference Sartore-Bianchi A, Ardini E, Bosotti R, Amatu A, Valtorta E, Somaschini A, et al. Sensitivity to entrectinib associated with a novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer. J Natl Cancer Inst. 2016;108 https://doi.org/10.1093/jnci/djv306. Sartore-Bianchi A, Ardini E, Bosotti R, Amatu A, Valtorta E, Somaschini A, et al. Sensitivity to entrectinib associated with a novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer. J Natl Cancer Inst. 2016;108 https://​doi.​org/​10.​1093/​jnci/​djv306.
12.
go back to reference Wong V, Pavlick D, Brennan T, Yelensky R, Crawford J, Ross JS, et al. Evaluation of a congenital infantile fibrosarcoma by comprehensive genomic profiling reveals an LMNA-NTRK gene fusion responsive to crizotinib. J Natl Cancer Inst. 2016;108 https://doi.org/10.1093/jnci/djv307. Wong V, Pavlick D, Brennan T, Yelensky R, Crawford J, Ross JS, et al. Evaluation of a congenital infantile fibrosarcoma by comprehensive genomic profiling reveals an LMNA-NTRK gene fusion responsive to crizotinib. J Natl Cancer Inst. 2016;108 https://​doi.​org/​10.​1093/​jnci/​djv307.
13.
go back to reference Lockwood WW, Chari R, Coe BP, Girard L, MacAulay C, lam S, et al. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene. 2008;27:4615–24.CrossRefPubMedPubMedCentral Lockwood WW, Chari R, Coe BP, Girard L, MacAulay C, lam S, et al. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene. 2008;27:4615–24.CrossRefPubMedPubMedCentral
14.
go back to reference Lee SJ, Kim NKD, Lee S-H, Kim ST, Park SH, Park JO, et al. NTRK gene amplification in patients with metastatic cancer. Prec Futur Med. 2017;1:129–37.CrossRef Lee SJ, Kim NKD, Lee S-H, Kim ST, Park SH, Park JO, et al. NTRK gene amplification in patients with metastatic cancer. Prec Futur Med. 2017;1:129–37.CrossRef
16.
go back to reference Vaishnavi A, Le AT, Doeble RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Disc. 2015;5:25–34.CrossRef Vaishnavi A, Le AT, Doeble RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Disc. 2015;5:25–34.CrossRef
18.
go back to reference Drilon A, Laetsch TW, Kummer S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib in Trk-fusion-positive cancer in adults and children. N Engl J Med. 2018;378:731–9.CrossRefPubMedPubMedCentral Drilon A, Laetsch TW, Kummer S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib in Trk-fusion-positive cancer in adults and children. N Engl J Med. 2018;378:731–9.CrossRefPubMedPubMedCentral
19.
go back to reference Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, Vetuschi A, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.CrossRefPubMed Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, Vetuschi A, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.CrossRefPubMed
20.
go back to reference Schramm A, Schowe B, Fielitz K, Heilman M, Martin M, Marshall T, et al. Exon-level expression analysis identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict neuroblastoma outcome. Br J Cancer. 2012;107:1409–17.CrossRefPubMedPubMedCentral Schramm A, Schowe B, Fielitz K, Heilman M, Martin M, Marshall T, et al. Exon-level expression analysis identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict neuroblastoma outcome. Br J Cancer. 2012;107:1409–17.CrossRefPubMedPubMedCentral
21.
go back to reference Simpson AM, Iyer R, Mangino JL, Minturn JE, Zhao H, Kolla V, et al. TrkAIII isoform expression upregulates stem cell markers and correlates with worse outcome in neuroblastomas (NBs). Proc Adv Neuroblast Res. 2012;164:POT055. Simpson AM, Iyer R, Mangino JL, Minturn JE, Zhao H, Kolla V, et al. TrkAIII isoform expression upregulates stem cell markers and correlates with worse outcome in neuroblastomas (NBs). Proc Adv Neuroblast Res. 2012;164:POT055.
22.
23.
go back to reference Farina AR, Cappabianca L, Ruggeri P, Di Ianni N, Ragone M, Merolla S, et al. Alternative TrkA splicing and neuroblastoma. In: Neuroblastoma - Present and Future. London: Prof Hiroyuki Shimada (Ed) ISBN:978–953–307-016-2. InTech. 2012:111–136. Farina AR, Cappabianca L, Ruggeri P, Di Ianni N, Ragone M, Merolla S, et al. Alternative TrkA splicing and neuroblastoma. In: Neuroblastoma - Present and Future. London: Prof Hiroyuki Shimada (Ed) ISBN:978–953–307-016-2. InTech. 2012:111–136.
24.
go back to reference Florenes VA, Maelandsmo GM, Holm R, Reich R, Lazarovici P, Davidson B. Expression of activated TrkA protein in melanocytic tumors. Am J Clin Pathol. 2004;122:412–20.CrossRefPubMed Florenes VA, Maelandsmo GM, Holm R, Reich R, Lazarovici P, Davidson B. Expression of activated TrkA protein in melanocytic tumors. Am J Clin Pathol. 2004;122:412–20.CrossRefPubMed
26.
go back to reference Farina AR, Tacconelli A, Cappabianca L, Cea G, Panella S, Chioda A, et al. The alternative TrkAIII splice variant targets the centrosome and promotes genetic instability. Mol Cell Biol. 2009;29:4812–30.CrossRefPubMedPubMedCentral Farina AR, Tacconelli A, Cappabianca L, Cea G, Panella S, Chioda A, et al. The alternative TrkAIII splice variant targets the centrosome and promotes genetic instability. Mol Cell Biol. 2009;29:4812–30.CrossRefPubMedPubMedCentral
27.
go back to reference Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, et al. TrkAIII expression in the thymus. J Neuroimmunol. 2007;183:151–61.CrossRefPubMed Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, et al. TrkAIII expression in the thymus. J Neuroimmunol. 2007;183:151–61.CrossRefPubMed
28.
go back to reference Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280:5350–70.CrossRefPubMed Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280:5350–70.CrossRefPubMed
29.
go back to reference Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR. Alternative TrkAIII splicing: a potential regulated tumor promoting switch in neuroblastoma. Future Oncol. 2005;1:689–98.CrossRefPubMed Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR. Alternative TrkAIII splicing: a potential regulated tumor promoting switch in neuroblastoma. Future Oncol. 2005;1:689–98.CrossRefPubMed
31.
go back to reference Arevalo JC, Conde B, Hempstead BL, Chao MV, Martin-Zanca D, Perez P. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol Cell Biol. 2000;20:5908–16.CrossRefPubMedPubMedCentral Arevalo JC, Conde B, Hempstead BL, Chao MV, Martin-Zanca D, Perez P. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol Cell Biol. 2000;20:5908–16.CrossRefPubMedPubMedCentral
32.
go back to reference Farina AR, Cappabianca L, Gneo L, Ruggeri P, Mackay AR. TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation. Oncotarget. 2018;9:8368–90.CrossRefPubMed Farina AR, Cappabianca L, Gneo L, Ruggeri P, Mackay AR. TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation. Oncotarget. 2018;9:8368–90.CrossRefPubMed
33.
go back to reference Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Laquaglia MJ, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.CrossRefPubMedPubMedCentral Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Laquaglia MJ, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.CrossRefPubMedPubMedCentral
34.
go back to reference Boutterin MC, Mazot P, Faure C, Doly S, Gervasi N, Tremblay MI, et al. Control of ALK (wild type and mutated forms) phosphorylation: specific role for the phosphatase PTP1B. Cell Signal. 2013;25:1505–13.CrossRefPubMed Boutterin MC, Mazot P, Faure C, Doly S, Gervasi N, Tremblay MI, et al. Control of ALK (wild type and mutated forms) phosphorylation: specific role for the phosphatase PTP1B. Cell Signal. 2013;25:1505–13.CrossRefPubMed
35.
go back to reference Shi W, George SK, George B, Curry CV, Murzabdillaeva A, Alkan S, et al. TrkA is a binding partner of NPM-Alk that promotes survival of ALK+ T-cell lymphoma. Mol Oncol. 2017;11:1189–207.CrossRefPubMedPubMedCentral Shi W, George SK, George B, Curry CV, Murzabdillaeva A, Alkan S, et al. TrkA is a binding partner of NPM-Alk that promotes survival of ALK+ T-cell lymphoma. Mol Oncol. 2017;11:1189–207.CrossRefPubMedPubMedCentral
37.
go back to reference Bochetta M, Di Resta I, Powers A, Fresco R, Tosolini A, Testa JR, et al. Human mesothelioma cells are unusually susceptible to simian virus 40-mediated transformation and asbestos carcinogenicity. Proc Natl Acad Sci U S A. 2000;97:10214–9.CrossRef Bochetta M, Di Resta I, Powers A, Fresco R, Tosolini A, Testa JR, et al. Human mesothelioma cells are unusually susceptible to simian virus 40-mediated transformation and asbestos carcinogenicity. Proc Natl Acad Sci U S A. 2000;97:10214–9.CrossRef
38.
go back to reference IARC Monographs on the evaluation of carcinogenic risks to humans Malaria and some polyoma viruses (SV40, BK, JC and Merkel cell viruses) (World Health Organisation international agency for research of Cancer, Geneva Switerland) 2014;104:133–251. IARC Monographs on the evaluation of carcinogenic risks to humans Malaria and some polyoma viruses (SV40, BK, JC and Merkel cell viruses) (World Health Organisation international agency for research of Cancer, Geneva Switerland) 2014;104:133–251.
39.
go back to reference Iwakura H, Ariyasu H, Kanamoto N, Hosoda K, Nakao K, Kangawa K, et al. Establishment of a novel neuroblastoma mouse model. Int J Oncol. 2008;33:1195–9.PubMed Iwakura H, Ariyasu H, Kanamoto N, Hosoda K, Nakao K, Kangawa K, et al. Establishment of a novel neuroblastoma mouse model. Int J Oncol. 2008;33:1195–9.PubMed
40.
go back to reference Farina AR, Cappabianca L, Ruggeri P, Gneo L, Maccarone R, Mackay AR. Retrograde TrkAIII transport from ERGIC to ER: a re-localisation mechanism for oncogenic activity. Oncotarget. 2015;6:35636–51.CrossRefPubMedPubMedCentral Farina AR, Cappabianca L, Ruggeri P, Gneo L, Maccarone R, Mackay AR. Retrograde TrkAIII transport from ERGIC to ER: a re-localisation mechanism for oncogenic activity. Oncotarget. 2015;6:35636–51.CrossRefPubMedPubMedCentral
41.
go back to reference Chen J, Crutchley J, Zhang D, Owzar K, Kastan MB. Identification of a DNA damage-response alternative splicing pathway that regulates p53 and cellular senescence markers. Cancer Discov. 2017;7:766–81.CrossRefPubMedPubMedCentral Chen J, Crutchley J, Zhang D, Owzar K, Kastan MB. Identification of a DNA damage-response alternative splicing pathway that regulates p53 and cellular senescence markers. Cancer Discov. 2017;7:766–81.CrossRefPubMedPubMedCentral
43.
go back to reference Goto N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci. 2008;99:1319–25.CrossRef Goto N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci. 2008;99:1319–25.CrossRef
44.
go back to reference Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma. Med Pediatr Oncol. 2000;35:569–72.CrossRefPubMed Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma. Med Pediatr Oncol. 2000;35:569–72.CrossRefPubMed
45.
go back to reference Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res. 2002;62:1802–8.PubMed Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res. 2002;62:1802–8.PubMed
46.
go back to reference Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.CrossRefPubMedPubMedCentral Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.CrossRefPubMedPubMedCentral
47.
go back to reference Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial cell growth factor. Proc Natl Acad Sci U S A. 2001;98:12485–90.CrossRefPubMedPubMedCentral Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial cell growth factor. Proc Natl Acad Sci U S A. 2001;98:12485–90.CrossRefPubMedPubMedCentral
48.
go back to reference Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP-3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Med. 2003;9:407–15.CrossRefPubMed Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP-3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Med. 2003;9:407–15.CrossRefPubMed
49.
go back to reference Ruggeri P, Farina AR, Di Ianni N, Cappabianca L, Ragone M, Ianni G, et al. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD-2 expression and activity at the mitochondria, within the context of a tumor stem cell-like phenotype. PLoS One. 2014;15:e94568.CrossRef Ruggeri P, Farina AR, Di Ianni N, Cappabianca L, Ragone M, Ianni G, et al. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD-2 expression and activity at the mitochondria, within the context of a tumor stem cell-like phenotype. PLoS One. 2014;15:e94568.CrossRef
50.
go back to reference Farina AR, Tacconelli A, Cappabianca L, Cea G, Chioda A, Romanelli A, et al. The neuroblastoma tumour suppressor TrkAI and its oncogenic alternative TrkAIII splice variant exhibit geldanamycin-sensitive interactions with Hsp90 in human neuroblastoma cells. Oncogene. 2009;28:4075–94.CrossRefPubMed Farina AR, Tacconelli A, Cappabianca L, Cea G, Chioda A, Romanelli A, et al. The neuroblastoma tumour suppressor TrkAI and its oncogenic alternative TrkAIII splice variant exhibit geldanamycin-sensitive interactions with Hsp90 in human neuroblastoma cells. Oncogene. 2009;28:4075–94.CrossRefPubMed
52.
go back to reference Moughamian AJ, Osborn GE, Lazurus JE, Maday S, Holzbauer ELF. Predered recruitment of dynactin to the microtubule plus end is required for efficient initiation of retrograde axonal transport. J Neurosci. 2013;33:13190–203.CrossRefPubMedPubMedCentral Moughamian AJ, Osborn GE, Lazurus JE, Maday S, Holzbauer ELF. Predered recruitment of dynactin to the microtubule plus end is required for efficient initiation of retrograde axonal transport. J Neurosci. 2013;33:13190–203.CrossRefPubMedPubMedCentral
53.
go back to reference Watson FL, Porcionatto MA, Battacharyya A, Stiles CD, Segal RA. TrkA glycosylation regulates localisation and activity. J Neurobiol. 1999;39:323–36.CrossRefPubMed Watson FL, Porcionatto MA, Battacharyya A, Stiles CD, Segal RA. TrkA glycosylation regulates localisation and activity. J Neurobiol. 1999;39:323–36.CrossRefPubMed
54.
go back to reference Farina AR, Cappabianca L, Ruggeri P, Gneo L, Mackay AR. The enemy from within: mislocalization of a compromised receptor as a mechanism for TrkAIII oncogenic activity. Cancer Cell Microenviron. 2016;3(1):1–5. https://doi.org/10.14800/com.1205. Farina AR, Cappabianca L, Ruggeri P, Gneo L, Mackay AR. The enemy from within: mislocalization of a compromised receptor as a mechanism for TrkAIII oncogenic activity. Cancer Cell Microenviron. 2016;3(1):1–5. https://​doi.​org/​10.​14800/​com.​1205.
55.
go back to reference Johnson A, Bhattachary N, Hanna M, Pennington JG, Schuh A, Wang L, et al. TGF clusters COPII-coated transport carriers and promotes early secretory pathway organisation. EMBO J. 2015;7:811–27.CrossRef Johnson A, Bhattachary N, Hanna M, Pennington JG, Schuh A, Wang L, et al. TGF clusters COPII-coated transport carriers and promotes early secretory pathway organisation. EMBO J. 2015;7:811–27.CrossRef
56.
go back to reference Schectersen LC, Hudson MP, Ko M, Philippidou P, Akmentin W, Wiley J, et al. Trk activation in the secretory pathway promotes Golgi fragmentation. Mol Cell Neurosci. 2010;43:403–13.CrossRef Schectersen LC, Hudson MP, Ko M, Philippidou P, Akmentin W, Wiley J, et al. Trk activation in the secretory pathway promotes Golgi fragmentation. Mol Cell Neurosci. 2010;43:403–13.CrossRef
57.
go back to reference Prior IA, Hancock JF. Ras trafficking, localisation and compartmentalised signaling. Semin Cell Dev Biol. 2012;23:145–53.CrossRefPubMed Prior IA, Hancock JF. Ras trafficking, localisation and compartmentalised signaling. Semin Cell Dev Biol. 2012;23:145–53.CrossRefPubMed
58.
go back to reference Gneo L, Ruggeri P, Cappabianca L, Farina AR, Di Ianni N, Mackay AR. TRAIL induces pro-apoptotic crosstalk between the TRAIL-receptor signaling pathway and TrkAIII in SH-SY5Y cells, unveiling a potential therapeutic “Achilles heel” for the TrkAIII oncoprotein in neuroblastoma. Oncotarget. 2016;7:80820–41.CrossRefPubMedPubMedCentral Gneo L, Ruggeri P, Cappabianca L, Farina AR, Di Ianni N, Mackay AR. TRAIL induces pro-apoptotic crosstalk between the TRAIL-receptor signaling pathway and TrkAIII in SH-SY5Y cells, unveiling a potential therapeutic “Achilles heel” for the TrkAIII oncoprotein in neuroblastoma. Oncotarget. 2016;7:80820–41.CrossRefPubMedPubMedCentral
59.
go back to reference Li Y, Guo Y, Tang J, Jiang J, Vhen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophysi Sin. 2014;46:629–40.CrossRef Li Y, Guo Y, Tang J, Jiang J, Vhen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophysi Sin. 2014;46:629–40.CrossRef
61.
go back to reference Hetz C, Lee A-W, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Nat Acad Sci USA. 2008;105:757–62.CrossRefPubMedPubMedCentral Hetz C, Lee A-W, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Nat Acad Sci USA. 2008;105:757–62.CrossRefPubMedPubMedCentral
62.
go back to reference Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;533:467–72.CrossRef Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;533:467–72.CrossRef
64.
go back to reference Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, et al. Cytosol proteostasis through importing of misfolded proteins into mitochondria. Nature. 2017;543:443–6.CrossRefPubMedPubMedCentral Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, et al. Cytosol proteostasis through importing of misfolded proteins into mitochondria. Nature. 2017;543:443–6.CrossRefPubMedPubMedCentral
65.
go back to reference Libert MV, Locasale JW. The Warburg effect: how does it benefit cancer cells. Trends in Biochem Sci. 2016;41:211–8.CrossRef Libert MV, Locasale JW. The Warburg effect: how does it benefit cancer cells. Trends in Biochem Sci. 2016;41:211–8.CrossRef
67.
go back to reference Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, et al. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle. 2013;12:1166–79.CrossRefPubMedPubMedCentral Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, et al. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle. 2013;12:1166–79.CrossRefPubMedPubMedCentral
68.
71.
go back to reference Janku F, Yap TA, Meric-Bernstam F. Targeting PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15:273–91.CrossRefPubMed Janku F, Yap TA, Meric-Bernstam F. Targeting PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15:273–91.CrossRefPubMed
72.
go back to reference Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799:775–87.CrossRefPubMedPubMedCentral Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799:775–87.CrossRefPubMedPubMedCentral
73.
go back to reference Booth L, Cazanave SC, Hamed HA, Yacoub A, Ogretmen B, Chen C-S, et al. OSU-30102 suppresses GRP78/BiP expression that causes PERK-dependent increase in tumor cell killing. Cancer Biol Ther. 2012;13:2234–6. Booth L, Cazanave SC, Hamed HA, Yacoub A, Ogretmen B, Chen C-S, et al. OSU-30102 suppresses GRP78/BiP expression that causes PERK-dependent increase in tumor cell killing. Cancer Biol Ther. 2012;13:2234–6.
75.
go back to reference Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, et al. Targeting Mcl-1 for the therapy of cancer. Exp Op Invest Drugs. 2011;20:1397–411.CrossRef Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, et al. Targeting Mcl-1 for the therapy of cancer. Exp Op Invest Drugs. 2011;20:1397–411.CrossRef
76.
go back to reference Song Y-H, Wang J, Nie G, Chen Y-J, Li X, Jiang X, et al. MicroRNA-509-5p functions as an anti-oncogene in breast cancer via targeting SOD2. Eur Rev Med Pharmacol Sci. 2017;21:3617–25.PubMed Song Y-H, Wang J, Nie G, Chen Y-J, Li X, Jiang X, et al. MicroRNA-509-5p functions as an anti-oncogene in breast cancer via targeting SOD2. Eur Rev Med Pharmacol Sci. 2017;21:3617–25.PubMed
77.
go back to reference Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) redox-control of signaling events that drive metastasis. Anti Cancer Agents Med Chem. 2011;11:191–201.CrossRef Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) redox-control of signaling events that drive metastasis. Anti Cancer Agents Med Chem. 2011;11:191–201.CrossRef
78.
go back to reference Von Karsdtedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer. 2017;17:352–66.CrossRef Von Karsdtedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer. 2017;17:352–66.CrossRef
79.
go back to reference Wu X, Wang S, Li M, Wang A, Zhou Y, Li P, et al. Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. Nano. 2017;9:13879–904. Wu X, Wang S, Li M, Wang A, Zhou Y, Li P, et al. Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. Nano. 2017;9:13879–904.
82.
go back to reference Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res. 2007;13:1783–8.CrossRefPubMed Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res. 2007;13:1783–8.CrossRefPubMed
Metadata
Title
The oncogenic neurotrophin receptor tropomyosin-related kinase variant, TrkAIII
Authors
Antonietta Rosella Farina
Lucia Cappabianca
Pierdomenico Ruggeri
Luciana Gneo
Cristina Pellegrini
Maria-Concetta Fargnoli
Andrew Reay Mackay
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0786-3

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine