Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

Chibby suppresses aerobic glycolysis and proliferation of nasopharyngeal carcinoma via the Wnt/β-catenin-Lin28/let7-PDK1 cascade

Authors: Cheng-fu Cai, Guo-dong Ye, Dong-yan Shen, Wei Zhang, Mao-li Chen, Xin-xin Chen, Da-xiong Han, Yan-jun Mi, Qi-cong Luo, Wang-yu Cai, Shu-yu Yang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

Great progress has been achieved in the study of the aerobic glycolysis or the so-called Warburg effect in a variety of cancers; however, the regulation of the Warburg effect in Nasopharyngeal carcinoma (NPC) has not been completely defined.

Methods

Gene expression pattern of NPC cells were used to test associations between Chibby and β-catenin expression. Chibby siRNAs and over-expression vector were transfected into NPC cells to down-regulate or up-regulate Chibby expression. Loss- and gain-of function assays were performed to investigate the role of Chibby in NPC cells. Western blot, cell proliferation, Glucose uptake, Lactate release, ATP level, and O2 consumption assays were used to determine the mechanism of Chibby regulation of underlying targets. Finally, immunohistochemistry assay of fresh NPC and nasopharyngeal normal tissue sample were used to detect the expression of Chibby, β-Catenin, and PDK1 by immunostaining.

Results

We observed that Chibby, a β-catenin-associated antagonist, is down-regulated in nasopharyngeal carcinoma cell lines and inhibits Wnt/β-Catenin signaling induced Warburg effect. Mechanism study revealed that Chibby regulates aerobic glycolysis in NPC cells through pyruvate dehydrogenase kinase 1(PDK1), an important enzyme involved in glucose metabolism. Moreover, Chibby suppresses aerobic glycolysis of NPC via Wnt/β-Catenin-Lin28/let7-PDK1 cascade. Chibby and PDK1 are critical for Wnt/β-Catenin signaling induced NPC cell proliferation both in vitro and in vivo. Finally, immunostaining assay of tissue samples provides an important clinical relevance among Chibby, Wnt/β-Catenin signaling and PDK1.

Conclusions

Our study reveals an association between Chibby expression and cancer aerobic glycolysis, which highlights the importance of Wnt/β-catenin pathway in regulation of energy metabolism of NPC. These results indicate that Chibby and PDK1 are the potential target for NPC treatment.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Semenza GL, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp. 2001;240:251–60. discussion 260-4PubMed Semenza GL, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp. 2001;240:251–60. discussion 260-4PubMed
4.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral
5.
go back to reference Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.CrossRefPubMed Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.CrossRefPubMed
6.
go back to reference Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.CrossRefPubMed Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.CrossRefPubMed
7.
go back to reference Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed
8.
go back to reference Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129(4):199–221.PubMed Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129(4):199–221.PubMed
9.
go back to reference Liu C, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.CrossRefPubMed Liu C, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.CrossRefPubMed
11.
go back to reference Takemaru K, et al. Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature. 2003;422(6934):905–9.CrossRefPubMed Takemaru K, et al. Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature. 2003;422(6934):905–9.CrossRefPubMed
12.
go back to reference Takemaru K, Fischer V, Li FQ. Fine-tuning of nuclear-catenin by Chibby and 14-3-3. Cell Cycle. 2009;8(2):210–3.CrossRefPubMed Takemaru K, Fischer V, Li FQ. Fine-tuning of nuclear-catenin by Chibby and 14-3-3. Cell Cycle. 2009;8(2):210–3.CrossRefPubMed
13.
go back to reference Li FQ, et al. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J Cell Biol. 2008;181(7):1141–54.CrossRefPubMedPubMedCentral Li FQ, et al. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J Cell Biol. 2008;181(7):1141–54.CrossRefPubMedPubMedCentral
16.
go back to reference Karakoula K, et al. Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13. Genes Chromosomes Cancer. 2008;47(11):1005–22.CrossRefPubMed Karakoula K, et al. Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13. Genes Chromosomes Cancer. 2008;47(11):1005–22.CrossRefPubMed
17.
18.
go back to reference Xu J, et al. Downregulated Chibby in laryngeal squamous cell carcinoma with increased expression in laryngeal carcinoma Hep-2 cells. Oncol Rep. 2014;32(5):1947–56.CrossRefPubMed Xu J, et al. Downregulated Chibby in laryngeal squamous cell carcinoma with increased expression in laryngeal carcinoma Hep-2 cells. Oncol Rep. 2014;32(5):1947–56.CrossRefPubMed
19.
go back to reference Xiao L, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene. 2014;33(37):4568–78.CrossRefPubMedPubMedCentral Xiao L, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene. 2014;33(37):4568–78.CrossRefPubMedPubMedCentral
20.
go back to reference Ma X, et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 2014;5:5212.CrossRefPubMed Ma X, et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 2014;5:5212.CrossRefPubMed
21.
go back to reference Cai WY, et al. The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126(Pt 13):2877–89.CrossRefPubMed Cai WY, et al. The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126(Pt 13):2877–89.CrossRefPubMed
22.
go back to reference Fang CY, et al. EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int J Mol Sci. 2015;16(2):2530–58.CrossRefPubMedPubMedCentral Fang CY, et al. EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int J Mol Sci. 2015;16(2):2530–58.CrossRefPubMedPubMedCentral
23.
go back to reference Zhang LF, et al. Incidence trend of nasopharyngeal carcinoma from 1987 to 2011 in Sihui County, Guangdong Province, South China: an age-period-cohort analysis. Chin J Cancer. 2015;34(8):350–7.PubMed Zhang LF, et al. Incidence trend of nasopharyngeal carcinoma from 1987 to 2011 in Sihui County, Guangdong Province, South China: an age-period-cohort analysis. Chin J Cancer. 2015;34(8):350–7.PubMed
26.
go back to reference Wang Z, et al. ZNRF3 inhibits the invasion and tumorigenesis in nasopharyngeal carcinoma cells by inactivating the Wnt/beta-catenin pathway. Oncol Res. 2017;25(4):571–7.CrossRefPubMedPubMedCentral Wang Z, et al. ZNRF3 inhibits the invasion and tumorigenesis in nasopharyngeal carcinoma cells by inactivating the Wnt/beta-catenin pathway. Oncol Res. 2017;25(4):571–7.CrossRefPubMedPubMedCentral
27.
go back to reference Zhang J, et al. YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res. 2016;35(1):109.CrossRefPubMedPubMedCentral Zhang J, et al. YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res. 2016;35(1):109.CrossRefPubMedPubMedCentral
28.
go back to reference Ren XY, et al. Low SFRP1 expression correlates with poor prognosis and promotes cell invasion by activating the Wnt/beta-catenin signaling pathway in NPC. Cancer Prev Res (Phila). 2015;8(10):968–77.CrossRef Ren XY, et al. Low SFRP1 expression correlates with poor prognosis and promotes cell invasion by activating the Wnt/beta-catenin signaling pathway in NPC. Cancer Prev Res (Phila). 2015;8(10):968–77.CrossRef
29.
go back to reference Cheng Y, et al. Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget. 2015;6(16):14428–39.CrossRefPubMedPubMedCentral Cheng Y, et al. Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget. 2015;6(16):14428–39.CrossRefPubMedPubMedCentral
31.
go back to reference Fendri A, et al. Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Investig. 2010;28(9):896–903.CrossRef Fendri A, et al. Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Investig. 2010;28(9):896–903.CrossRef
32.
go back to reference Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol. 2015;35(1):2–10.CrossRefPubMed Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol. 2015;35(1):2–10.CrossRefPubMed
33.
go back to reference Pate KT, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014;33(13):1454–73.PubMedPubMedCentral Pate KT, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014;33(13):1454–73.PubMedPubMedCentral
34.
go back to reference Lecarpentier Y, et al. Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med. 2017;6(1):14.CrossRefPubMedPubMedCentral Lecarpentier Y, et al. Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med. 2017;6(1):14.CrossRefPubMedPubMedCentral
35.
go back to reference Osthus RC, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275(29):21797–800.CrossRefPubMed Osthus RC, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275(29):21797–800.CrossRefPubMed
36.
go back to reference Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.CrossRefPubMedPubMedCentral Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.CrossRefPubMedPubMedCentral
38.
go back to reference Kim JW, et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27(21):7381–93.CrossRefPubMedPubMedCentral Kim JW, et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27(21):7381–93.CrossRefPubMedPubMedCentral
Metadata
Title
Chibby suppresses aerobic glycolysis and proliferation of nasopharyngeal carcinoma via the Wnt/β-catenin-Lin28/let7-PDK1 cascade
Authors
Cheng-fu Cai
Guo-dong Ye
Dong-yan Shen
Wei Zhang
Mao-li Chen
Xin-xin Chen
Da-xiong Han
Yan-jun Mi
Qi-cong Luo
Wang-yu Cai
Shu-yu Yang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0769-4

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine