Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling

Authors: Jing Tian, Yong Wang, Xing Zhang, Qianyao Ren, Rong Li, Yue Huang, Huiling Lu, Jian Chen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Clinically, breast cancer is generally classified into estrogen receptor-positive (ER+) or estrogen receptor-negative (ER−) subtypes. The phytoestrogen calycosin has been shown to inhibit the proliferation of ER+ cells, which may be mediated by a feedback loop that involves miR-375, RAS dexamethasone-induced 1 (RASD1), and ERα. However, how calycosin acts on ER− breast cancer cells remains unclear.

Results

Here, we show that calycosin inhibited the proliferation of both ER− (MDA-MB-468 and SKBR3) and ER+ breast cancer cells (MCF-7 and T47D) and that these inhibitory effects were associated with the up-regulation of the long non-coding RNA (lncRNA) WDR7-7. For the first time, we demonstrate that the expression of WDR7-7 is reduced in breast cancer cell lines and that the overexpression of WDR7-7 inhibits growth through a mechanism that involves G-protein coupled estrogen receptor 30 (GPR30). Meanwhile, we show that calycosin stimulated the WDR7-7-GPR30 signaling pathway in MCF-7, T47D, MDA-MB-468, and SKBR3 breast cancer cells. In contrast, in MCF10A and GPR30-deficient MDA-MB-231 cells, due to a lack of WDR7-7-GPR30 for activation, calycosin failed to inhibit cell growth. Additionally, in all four GPR30-positive breast cancer lines, calycosin decreased the phosphorylation levels of SRC, EGFR, ERK1/2 and Akt, but the inhibition of WDR7-7 blocked these changes and increased proliferation. In mice bearing MCF-7 or SKBR3 xenografts, tumor growth was inhibited by calycosin, and changes in expression the levels of WDR7-7 and GPR30 in tumor tissues were similar to those in cultured MCF-7 and SKBR3 cells.

Conclusions

These results suggest the possibility that calycosin inhibited the proliferation of breast cancer cells, at least partially, through WDR7-7-GPR30 signaling, which may explain why calycosin can exert inhibitory effects on ER− breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66:31–42.CrossRefPubMed DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66:31–42.CrossRefPubMed
2.
go back to reference Houghton LC, Ganmaa D, Rosenberg PS, Davaalkham D, Stanczyk FZ, Hoover RN, et al. Associations of breast cancer risk factors with premenopausal sex hormones in women with very low breast cancer risk. Int J Environ Res Public Health. 2016;13:1066.CrossRefPubMedCentral Houghton LC, Ganmaa D, Rosenberg PS, Davaalkham D, Stanczyk FZ, Hoover RN, et al. Associations of breast cancer risk factors with premenopausal sex hormones in women with very low breast cancer risk. Int J Environ Res Public Health. 2016;13:1066.CrossRefPubMedCentral
3.
go back to reference Hwang CS, Kwak HS, Lim HJ, Lee SH, Kang YS, Choe TB, et al. Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol. 2006;101:246–53.CrossRefPubMed Hwang CS, Kwak HS, Lim HJ, Lee SH, Kang YS, Choe TB, et al. Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol. 2006;101:246–53.CrossRefPubMed
5.
go back to reference Uifălean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules. 2015;21:E13.CrossRefPubMed Uifălean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules. 2015;21:E13.CrossRefPubMed
6.
go back to reference Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem. 2016;196:589–600.CrossRefPubMed Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, et al. Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem. 2016;196:589–600.CrossRefPubMed
7.
go back to reference Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol. 2014;5:705–12.CrossRefPubMedPubMedCentral Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol. 2014;5:705–12.CrossRefPubMedPubMedCentral
8.
go back to reference Andrade JE, Ju YH, Baker C, Doerge DR, Helferich WG. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol Nutr Food Res. 2015;59:413–23.CrossRefPubMed Andrade JE, Ju YH, Baker C, Doerge DR, Helferich WG. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol Nutr Food Res. 2015;59:413–23.CrossRefPubMed
9.
go back to reference Wood CE, Register TC, Franke AA, Anthony MS, Cline JM. Dietary soy isoflavones inhibit estrogen effects in the postmenopausal breast. Cancer Res. 2006;66:1241–9.CrossRefPubMed Wood CE, Register TC, Franke AA, Anthony MS, Cline JM. Dietary soy isoflavones inhibit estrogen effects in the postmenopausal breast. Cancer Res. 2006;66:1241–9.CrossRefPubMed
10.
go back to reference Wang WZ, Liu HO, Wu YH, Hong Y, Yang JW, Liu YH, et al. Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1. J Exp Clin Cancer Res. 2010;29:140.CrossRefPubMedPubMedCentral Wang WZ, Liu HO, Wu YH, Hong Y, Yang JW, Liu YH, et al. Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1. J Exp Clin Cancer Res. 2010;29:140.CrossRefPubMedPubMedCentral
11.
go back to reference Tian J, Duan YX, Bei CY, Chen J. Calycosin induces apoptosis by upregulation of RASD1 in human breast cancer cells MCF-7. Horm Metab Res. 2013;45:593–8.CrossRefPubMed Tian J, Duan YX, Bei CY, Chen J. Calycosin induces apoptosis by upregulation of RASD1 in human breast cancer cells MCF-7. Horm Metab Res. 2013;45:593–8.CrossRefPubMed
12.
go back to reference Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One. 2014;9:e91245.CrossRefPubMedPubMedCentral Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One. 2014;9:e91245.CrossRefPubMedPubMedCentral
13.
go back to reference Lavorgna G, Vago R, Sarmini M, Montorsi F, Salonia A, Bellone M. Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol Res. 2016;110:131–8.CrossRefPubMed Lavorgna G, Vago R, Sarmini M, Montorsi F, Salonia A, Bellone M. Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol Res. 2016;110:131–8.CrossRefPubMed
14.
go back to reference Ingle JN, Xie F, Ellis MJ, Goss PE, Shepherd LE, Chapman JW, et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a Pharmacogenomic basis for the response of breast cancer patients to Aromatase inhibitor therapy. Cancer Res. 2016;76:7012–23.CrossRefPubMedPubMedCentral Ingle JN, Xie F, Ellis MJ, Goss PE, Shepherd LE, Chapman JW, et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a Pharmacogenomic basis for the response of breast cancer patients to Aromatase inhibitor therapy. Cancer Res. 2016;76:7012–23.CrossRefPubMedPubMedCentral
15.
go back to reference Latorre E, Carelli S, Raimondi I, D'Agostino V, Castiglioni I, Zucal C, et al. The ribonucleic complex HuR-MALAT1 represses CD133 expression and suppresses epithelial-Mesenchymal transition in breast cancer. Cancer Res. 2016;76:2626–36.CrossRefPubMed Latorre E, Carelli S, Raimondi I, D'Agostino V, Castiglioni I, Zucal C, et al. The ribonucleic complex HuR-MALAT1 represses CD133 expression and suppresses epithelial-Mesenchymal transition in breast cancer. Cancer Res. 2016;76:2626–36.CrossRefPubMed
16.
17.
go back to reference Girgert R, Emons G, Grundker C. Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat. 2012;134:199–205.CrossRefPubMedPubMedCentral Girgert R, Emons G, Grundker C. Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat. 2012;134:199–205.CrossRefPubMedPubMedCentral
18.
go back to reference Jiang Z, Guo J, Shen J, Jin M, Xie S, Wang L. The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J Exp Clin Cancer Res. 2012;31:42.CrossRefPubMedPubMedCentral Jiang Z, Guo J, Shen J, Jin M, Xie S, Wang L. The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J Exp Clin Cancer Res. 2012;31:42.CrossRefPubMedPubMedCentral
19.
go back to reference Weissenborn C, Ignatov T, Ochel HJ, Costa SD, Zenclussen AC, Ignatova Z, et al. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol. 2014;140:713–23.CrossRefPubMed Weissenborn C, Ignatov T, Ochel HJ, Costa SD, Zenclussen AC, Ignatova Z, et al. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol. 2014;140:713–23.CrossRefPubMed
20.
go back to reference Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;e1428:5. Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;e1428:5.
21.
go back to reference de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70:9175–84.CrossRefPubMed de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70:9175–84.CrossRefPubMed
22.
go back to reference Scaling AL, Prossnitz ER, Hathaway HJ. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast. Horm Cancer. 2014;5:146–60.CrossRefPubMedPubMedCentral Scaling AL, Prossnitz ER, Hathaway HJ. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast. Horm Cancer. 2014;5:146–60.CrossRefPubMedPubMedCentral
23.
go back to reference Lappano R, Pisano A, Maggiolini M. GPER function in breast cancer: an overview. Front Endocrinol (Lausanne). 2014;5:66. Lappano R, Pisano A, Maggiolini M. GPER function in breast cancer: an overview. Front Endocrinol (Lausanne). 2014;5:66.
26.
27.
28.
go back to reference Roca P, Sastre-Serra J, Nadal-Serrano M, Pons DG, Blanquer-Rosselló Mdel M, Oliver J. Phytoestrogens and mitochondrial biogenesis in breast cancer. Influence of estrogen receptors ratio. Curr Pharm Des. 2014;20:5594–618.CrossRefPubMed Roca P, Sastre-Serra J, Nadal-Serrano M, Pons DG, Blanquer-Rosselló Mdel M, Oliver J. Phytoestrogens and mitochondrial biogenesis in breast cancer. Influence of estrogen receptors ratio. Curr Pharm Des. 2014;20:5594–618.CrossRefPubMed
29.
go back to reference Lappano R, Maggiolini M. Pharmacotherapeutic targeting of G protein-coupled receptors in oncology: examples of approved therapies and emerging concepts. Drugs. 2017;77:951–65.CrossRefPubMed Lappano R, Maggiolini M. Pharmacotherapeutic targeting of G protein-coupled receptors in oncology: examples of approved therapies and emerging concepts. Drugs. 2017;77:951–65.CrossRefPubMed
30.
go back to reference Wang D, Hu L, Zhang G, Zhang L, Chen C. G protein-coupled receptor 30 in tumor development. Endocrine. 2010;38:29–37.CrossRefPubMed Wang D, Hu L, Zhang G, Zhang L, Chen C. G protein-coupled receptor 30 in tumor development. Endocrine. 2010;38:29–37.CrossRefPubMed
31.
go back to reference Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, et al. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. 2017;56:580–93.CrossRefPubMed Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, et al. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. 2017;56:580–93.CrossRefPubMed
32.
go back to reference Zhou K, Sun P, Zhang Y, You X, Li P, Wang T. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling. Steroids. 2016;111:113–20.CrossRefPubMed Zhou K, Sun P, Zhang Y, You X, Li P, Wang T. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling. Steroids. 2016;111:113–20.CrossRefPubMed
33.
go back to reference Yu T, Liu M, Luo H, Wu C, Tang X, Tang S, et al. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol. 2014;143:392–403.CrossRefPubMed Yu T, Liu M, Luo H, Wu C, Tang X, Tang S, et al. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol. 2014;143:392–403.CrossRefPubMed
34.
go back to reference Lappano R, Rosano C, Santolla MF, Pupo M, De Francesco EM, De Marco P, et al. Two novel GPER agonists induce gene expression changes and growth effects in cancer cells. Curr Cancer Drug Targets. 2012;12:531–42.CrossRefPubMed Lappano R, Rosano C, Santolla MF, Pupo M, De Francesco EM, De Marco P, et al. Two novel GPER agonists induce gene expression changes and growth effects in cancer cells. Curr Cancer Drug Targets. 2012;12:531–42.CrossRefPubMed
35.
go back to reference Sheng ZG, Zhu BZ. Low concentrations of bisphenol a induce mouse spermatogonial cell proliferation by G protein-coupled receptor 30 and estrogen receptor-α. Environ Health Perspect. 2011;119:1775–80.CrossRefPubMedPubMedCentral Sheng ZG, Zhu BZ. Low concentrations of bisphenol a induce mouse spermatogonial cell proliferation by G protein-coupled receptor 30 and estrogen receptor-α. Environ Health Perspect. 2011;119:1775–80.CrossRefPubMedPubMedCentral
36.
go back to reference Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, et al. Targeting epidermal growth factor receptor in triple negative breast cancer: new discoveries and practical insights for drug development. Cancer Treat Rev. 2017;53:111–9.CrossRefPubMed Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, et al. Targeting epidermal growth factor receptor in triple negative breast cancer: new discoveries and practical insights for drug development. Cancer Treat Rev. 2017;53:111–9.CrossRefPubMed
37.
go back to reference Wróbel AM, Gregoraszczuk EŁ. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett. 2015;238:110–6.CrossRefPubMed Wróbel AM, Gregoraszczuk EŁ. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett. 2015;238:110–6.CrossRefPubMed
Metadata
Title
Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling
Authors
Jing Tian
Yong Wang
Xing Zhang
Qianyao Ren
Rong Li
Yue Huang
Huiling Lu
Jian Chen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0625-y

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine