Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib

Authors: Lixia Gao, Xuli Wang, Yaoliang Tang, Shuang Huang, Chien-An Andy Hu, Yong Teng

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Sorafenib, a multi-kinase inhibitor, is used as a standard therapy for advanced hepatocellular carcinoma (HCC). However, complete remission has not been achieved and the molecular basis of HCC resistance to sorafenib remains largely unknown. Previous studies have shown that fibroblast growth factor 19 (FGF19) expression correlates with tumor progression and poor prognosis of HCC. Here, we demonstrate the novel role of FGF19 in HCC resistance to sorafenib therapy.

Methods

FGF19 Knockdown cells were achieved by lentiviral-mediated interference, and FGFR4 knockout cells were achieved by CRISPR-Cas9. Protein levels of FGF19, FGFR4 and c-PARP in various HCC cell lines were measured by Western blotting analysis. Cell viability was determined by MTS assay, apoptosis was determined by DAPI nuclear staining and Western blot of c-PRAP, and ROS generation was determined by DCFH-DA staining and electrochemical biosensor.

Results

We showed that FGF19, when overexpressed, inhibited the effect of sorafenib on ROS generation and apoptosis in HCC. In contrast, loss of FGF19 or its receptor FGFR4 led to a remarkable increase in sorafenib-induced ROS generation and apoptosis. In addition, knockdown of FGF19 in sorafenib-resistant HCC cells significantly enhanced the sensitivity to sorafenib. Importantly, targeting FGF19/FGFR4 axis by ponatinib, a third-generation inhibitor of chronic myeloid leukemia, overcomes HCC resistance of sorafenib by enhancing ROS-associated apoptosis in sorafenib-treated HCC.

Conclusion

Our results provide the first evidence that inhibition of FGF19/FGFR4 signaling significantly overcomes sorafenib resistance in HCC. Co-treatment of ponatinib and sorafinib may represent an effective therapeutic approach for eradicating HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Njei B, Rotman Y, Ditah I, Lim JK. Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology. 2015;61:191–99.CrossRefPubMed Njei B, Rotman Y, Ditah I, Lim JK. Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology. 2015;61:191–99.CrossRefPubMed
2.
go back to reference Salem R, Gilbertsen M, Butt Z, Memon K, Vouche M, Hickey R, et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol H. 2013;11:1358–65.CrossRef Salem R, Gilbertsen M, Butt Z, Memon K, Vouche M, Hickey R, et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol H. 2013;11:1358–65.CrossRef
3.
go back to reference Memon K, Kulik L, Lewandowski RJ, Mulcahy MF, Benson AB, Ganger D, et al. Radioembolization for hepatocellular carcinoma with portal vein thrombosis: impact of liver function on systemic treatment options at disease progression. J Hepatol. 2013;58:73–80.CrossRefPubMed Memon K, Kulik L, Lewandowski RJ, Mulcahy MF, Benson AB, Ganger D, et al. Radioembolization for hepatocellular carcinoma with portal vein thrombosis: impact of liver function on systemic treatment options at disease progression. J Hepatol. 2013;58:73–80.CrossRefPubMed
4.
go back to reference Chang TS, Huang Y-H. Role of SENP1 in HBx-induced cell migration and stemness-related properties in hepatocellular carcinoma. Cancer Res. 2016;76:1720–20.CrossRef Chang TS, Huang Y-H. Role of SENP1 in HBx-induced cell migration and stemness-related properties in hepatocellular carcinoma. Cancer Res. 2016;76:1720–20.CrossRef
5.
go back to reference Salvi A, Conde I, Abeni E, Arici B, Grossi I, Specchia C, et al. Effects of miR-193a and sorafenib on hepatocellular carcinoma cells. Mol Cancer. 2013;12:162.CrossRefPubMedPubMedCentral Salvi A, Conde I, Abeni E, Arici B, Grossi I, Specchia C, et al. Effects of miR-193a and sorafenib on hepatocellular carcinoma cells. Mol Cancer. 2013;12:162.CrossRefPubMedPubMedCentral
6.
go back to reference Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther. 2014;13:1589–98.CrossRefPubMed Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther. 2014;13:1589–98.CrossRefPubMed
7.
go back to reference Chiu J, Tang YF, Yao TJ, Wong A, Wong H, Leung R, et al. The use of single‐agent sorafenib in the treatment of advanced hepatocellular carcinoma patients with underlying Child‐Pugh B liver cirrhosis. Cancer. 2012;118:5293–301.CrossRefPubMed Chiu J, Tang YF, Yao TJ, Wong A, Wong H, Leung R, et al. The use of single‐agent sorafenib in the treatment of advanced hepatocellular carcinoma patients with underlying Child‐Pugh B liver cirrhosis. Cancer. 2012;118:5293–301.CrossRefPubMed
8.
go back to reference Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.CrossRefPubMed Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.CrossRefPubMed
9.
go back to reference Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101–10.CrossRefPubMed Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101–10.CrossRefPubMed
10.
go back to reference van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, et al. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 2013;329:74–83.CrossRefPubMed van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, et al. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 2013;329:74–83.CrossRefPubMed
11.
12.
go back to reference Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.CrossRefPubMed Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.CrossRefPubMed
13.
go back to reference Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine. 1999;11:729–35.CrossRefPubMed Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine. 1999;11:729–35.CrossRefPubMed
14.
15.
go back to reference Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell. 2011;19:347–58.CrossRefPubMedPubMedCentral Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell. 2011;19:347–58.CrossRefPubMedPubMedCentral
16.
go back to reference Repana D, Ross P. Targeting FGF19/FGFR4 pathway: a novel therapeutic strategy for hepatocellular carcinoma. Diseases. 2015;3:294–305.CrossRef Repana D, Ross P. Targeting FGF19/FGFR4 pathway: a novel therapeutic strategy for hepatocellular carcinoma. Diseases. 2015;3:294–305.CrossRef
17.
go back to reference Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23:1422–33.CrossRefPubMedPubMedCentral Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23:1422–33.CrossRefPubMedPubMedCentral
18.
go back to reference Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol. 2009;50:118–27.CrossRefPubMed Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol. 2009;50:118–27.CrossRefPubMed
19.
go back to reference Harmer NJ, Pellegrini L, Chirgadze D, Fernandez-Recio J, Blundell TL. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry. 2004;43:629–40.CrossRefPubMed Harmer NJ, Pellegrini L, Chirgadze D, Fernandez-Recio J, Blundell TL. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry. 2004;43:629–40.CrossRefPubMed
20.
go back to reference Zhao H, Lv F, Liang G, Huang X, Wu G, Zhang W, et al. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3beta/beta-catenin signaling cascade via FGFR4 activation. Oncotarget. 2016;7:13575–86.PubMed Zhao H, Lv F, Liang G, Huang X, Wu G, Zhang W, et al. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3beta/beta-catenin signaling cascade via FGFR4 activation. Oncotarget. 2016;7:13575–86.PubMed
21.
go back to reference Miura S, Mitsuhashi N, Shimizu H, Kimura F, Yoshidome H, Otsuka M, et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer. 2012;12:56.CrossRefPubMedPubMedCentral Miura S, Mitsuhashi N, Shimizu H, Kimura F, Yoshidome H, Otsuka M, et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer. 2012;12:56.CrossRefPubMedPubMedCentral
22.
go back to reference Chen Z, Xie B, Zhu Q, Xia Q, Jiang S, Cao R, et al. FGFR4 and TGF-beta1 expression in hepatocellular carcinoma: correlation with clinicopathological features and prognosis. Int J Med Sci. 2013;10:1868–75.CrossRefPubMedPubMedCentral Chen Z, Xie B, Zhu Q, Xia Q, Jiang S, Cao R, et al. FGFR4 and TGF-beta1 expression in hepatocellular carcinoma: correlation with clinicopathological features and prognosis. Int J Med Sci. 2013;10:1868–75.CrossRefPubMedPubMedCentral
23.
go back to reference Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17.CrossRefPubMed Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17.CrossRefPubMed
24.
go back to reference Kaibori M, Sakai K, Ishizaki M, Matsushima H, De Velasco MA, Matsui K, et al. Increased FGF19 copy number is frequently detected in hepatocellular carcinoma with a complete response after sorafenib treatment. Oncotarget. 2016. doi: 10.18632/oncotarget.10077. Kaibori M, Sakai K, Ishizaki M, Matsushima H, De Velasco MA, Matsui K, et al. Increased FGF19 copy number is frequently detected in hepatocellular carcinoma with a complete response after sorafenib treatment. Oncotarget. 2016. doi: 10.18632/oncotarget.10077.
25.
go back to reference Yu L, Gao LX, Ma XQ, Hu FX, Li CM, Lu Z. Involvement of superoxide and nitric oxide in BRAF(V600E) inhibitor PLX4032-induced growth inhibition of melanoma cells. Integr Biol. 2014;6:1211–17.CrossRef Yu L, Gao LX, Ma XQ, Hu FX, Li CM, Lu Z. Involvement of superoxide and nitric oxide in BRAF(V600E) inhibitor PLX4032-induced growth inhibition of melanoma cells. Integr Biol. 2014;6:1211–17.CrossRef
26.
go back to reference De U, Kundu A, Kim E, Kwack J, Kim H. Plumbagin induces p53-dependent apoptosis via generation of reactive oxygen species in human cancer cells. Cancer Res. 2016;76:2984.CrossRef De U, Kundu A, Kim E, Kwack J, Kim H. Plumbagin induces p53-dependent apoptosis via generation of reactive oxygen species in human cancer cells. Cancer Res. 2016;76:2984.CrossRef
27.
go back to reference Octavia Y, Brunner-La Rocca HP, Moens AL. NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic Biol Med. 2012;52:291–7.CrossRefPubMed Octavia Y, Brunner-La Rocca HP, Moens AL. NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic Biol Med. 2012;52:291–7.CrossRefPubMed
28.
go back to reference Sandhu DS, Baichoo E, Roberts LR. Fibroblast growth factor signaling in liver carcinogenesis. Hepatology. 2014;59:1166–73.CrossRefPubMed Sandhu DS, Baichoo E, Roberts LR. Fibroblast growth factor signaling in liver carcinogenesis. Hepatology. 2014;59:1166–73.CrossRefPubMed
29.
go back to reference Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMed Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMed
30.
go back to reference Roth GS, Zeybek A, Macek-Jilkova Z, Abbadessa G, Yu Y, Marche P, et al. Abstract B111: Efficacy of AKT inhibitor ARQ 092 compared with Sorafenib in a cirrhotic rat model with hepatocellular carcinoma. Mol Cancer Ther. 2015;14:B111.CrossRef Roth GS, Zeybek A, Macek-Jilkova Z, Abbadessa G, Yu Y, Marche P, et al. Abstract B111: Efficacy of AKT inhibitor ARQ 092 compared with Sorafenib in a cirrhotic rat model with hepatocellular carcinoma. Mol Cancer Ther. 2015;14:B111.CrossRef
31.
go back to reference Kim HS, Eun JW, Shen Q, Shin WC, Yang HD, Kim SY, et al. Histone deacetylase 2 is a potential determinant of the sensitivity of hepatocellular carcinoma cells to sorafenib. Cancer Res. 2016;76:4810.CrossRef Kim HS, Eun JW, Shen Q, Shin WC, Yang HD, Kim SY, et al. Histone deacetylase 2 is a potential determinant of the sensitivity of hepatocellular carcinoma cells to sorafenib. Cancer Res. 2016;76:4810.CrossRef
32.
go back to reference Coriat R, Nicco C, Chereau C, Mir O, Alexandre J, Ropert S, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther. 2012;11:2284–93.CrossRefPubMed Coriat R, Nicco C, Chereau C, Mir O, Alexandre J, Ropert S, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther. 2012;11:2284–93.CrossRefPubMed
34.
35.
go back to reference Li XR, Wang B, Xu JJ, Chen HY. In vitro detection of superoxide anions released from cancer cells based on potassium-doped carbon nanotubes-ionic liquid composite gels. Nanoscale. 2011;3:5026–33.CrossRefPubMed Li XR, Wang B, Xu JJ, Chen HY. In vitro detection of superoxide anions released from cancer cells based on potassium-doped carbon nanotubes-ionic liquid composite gels. Nanoscale. 2011;3:5026–33.CrossRefPubMed
36.
go back to reference Gao L, Teng Y. Exploiting plug-and-play electrochemistry for drug discovery. Future Med Chem. 2016;8:567–77.CrossRefPubMed Gao L, Teng Y. Exploiting plug-and-play electrochemistry for drug discovery. Future Med Chem. 2016;8:567–77.CrossRefPubMed
37.
go back to reference Fan C, Chen J, Wang Y, Wong YS, Zhang Y, Zheng W, et al. Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med. 2013;65:305–16.CrossRefPubMed Fan C, Chen J, Wang Y, Wong YS, Zhang Y, Zheng W, et al. Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med. 2013;65:305–16.CrossRefPubMed
38.
go back to reference Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.CrossRefPubMed Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.CrossRefPubMed
39.
go back to reference Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5:424–37.CrossRefPubMed Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5:424–37.CrossRefPubMed
Metadata
Title
FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib
Authors
Lixia Gao
Xuli Wang
Yaoliang Tang
Shuang Huang
Chien-An Andy Hu
Yong Teng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0478-9

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine