Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research

Forkhead Box Transcription Factor (FOXO3a) mediates the cytotoxic effect of vernodalin in vitro and inhibits the breast tumor growth in vivo

Authors: Suresh Kumar Ananda Sadagopan, Nooshin Mohebali, Chung Yeng Looi, Mohadeseh Hasanpourghadi, Ashok Kumar Pandurangan, Aditya Arya, Hamed Karimian, Mohd Rais Mustafa

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

Natural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies. Recently, we demonstrated that vernodalin (the active constituent of the medicinal herb Centratherum anthelminticum seeds) induces apoptosis in breast cancer cell-lines. The aim of this work was to gain an insight into the underlying anticancer mechanism of vernodalin using in vitro and in vivo model.

Methods

Vernodalin was isolated through the bioassay guided fractionation from the seeds. The protein expression of p-Akt, PI3K, FOXO3a, Bim, p27kip1, cyclinD1, and cyclinE was examined by the Western blot analysis. Immunoprecipitation assays were performed to analyse Akt kinase activity. Small interfering RNA (siRNA) was used to study the role of FOXO3a upregulation and their targets during vernodalin treatment. Immunofluorescence, subcellular localisation of FOXO3a by Western blot was performed to analyse FOXO3a localisation in nucleus of breast cancer cells. Immunohistochemical analysis of PCNA, Ki67, p27kip1, FOXO3a and p-FOXO3a in the LA7-induced mammary gland tumor model was performed.

Results

Our results showed that vernodalin regulates cancer cell apoptosis through activation of FOXO transcription factors and its downstream targets (Bim, p27Kip1, p21Waf1/cip1, cyclin D1, cyclin E) as examined by Western blots. Furthermore, we showed that FOXO3a/PI3K-Akt played a significant role in vernodalin induced apoptosis in breast cancer cells. Immunoprecipitation assays showed Akt kinase activity was downregulated. Immunofluorescence, subcellular fractionation and Western blot showed FOXO3a accumulation in the nucleus of breast cancer cells after vernodalin treatment. Silencing of FOXO3a protected breast cancer cells against vernodalin induced apoptosis. The anti-tumor action of vernodalin was further confirmed by examining cell proliferative markers, PCNA and Ki67 in the LA7-induced mammary gland tumor model. We also corroborated our findings in vivo by showing upregulation of p27Kip1, FOXO3a and decrease in the p-FOXO3a level in vernodalin-treated breast tumor tissue.

Conclusions

Our results suggest that PI3K-Akt/FOXOa pathway is a critical mediator of vernodalin-induced cytotoxicity and this compound could be further developed as a potential chemopreventive or chemotherapeutic agent for breast cancer therapy.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
3.
5.
go back to reference Brunello A, Roma A, Falci C, Basso U. Chemotherapy and targeted agents for elderly women with advanced breast cancer. Recent Pat Anticancer Drug Discov. 2008;3:187–201.CrossRefPubMed Brunello A, Roma A, Falci C, Basso U. Chemotherapy and targeted agents for elderly women with advanced breast cancer. Recent Pat Anticancer Drug Discov. 2008;3:187–201.CrossRefPubMed
6.
go back to reference Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol Nutr Food Res. 2012;56:14–29.CrossRefPubMed Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol Nutr Food Res. 2012;56:14–29.CrossRefPubMed
7.
go back to reference Vadodkar AS, Suman S, Lakshmanaswamy R, Damodaran C. Chemoprevention of breast cancer by dietary compounds. Anticancer Agents Med Chem. 2012;12:1185–202.CrossRefPubMed Vadodkar AS, Suman S, Lakshmanaswamy R, Damodaran C. Chemoprevention of breast cancer by dietary compounds. Anticancer Agents Med Chem. 2012;12:1185–202.CrossRefPubMed
8.
go back to reference Sarkar FH, Li YW. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin. 2007;28:1305–15.CrossRefPubMed Sarkar FH, Li YW. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin. 2007;28:1305–15.CrossRefPubMed
9.
go back to reference Kado K, Forsyth A, Patel PR, Schwartz JA. Dietary supplements and natural products in breast cancer trials. Front Biosci. 2012;4:546–67.CrossRef Kado K, Forsyth A, Patel PR, Schwartz JA. Dietary supplements and natural products in breast cancer trials. Front Biosci. 2012;4:546–67.CrossRef
10.
go back to reference Greenlee H, Kwan ML, Ergas IJ, Sherman KJ, Krathwohl SE, Bonnell C. Complementary and alternative therapy use before and after breast cancer diagnosis: the Pathways Study. Breast Cancer Res Treat. 2009;117:653–65.PubMedCentralCrossRefPubMed Greenlee H, Kwan ML, Ergas IJ, Sherman KJ, Krathwohl SE, Bonnell C. Complementary and alternative therapy use before and after breast cancer diagnosis: the Pathways Study. Breast Cancer Res Treat. 2009;117:653–65.PubMedCentralCrossRefPubMed
11.
go back to reference Kumar NB, Allen K, Bell K. Perioperative herbal supplement use in cancer patients: potential implications and recommendations for presurgical screening. Cancer Control. 2005;12:149–57.PubMed Kumar NB, Allen K, Bell K. Perioperative herbal supplement use in cancer patients: potential implications and recommendations for presurgical screening. Cancer Control. 2005;12:149–57.PubMed
12.
13.
go back to reference van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional target genes. Antioxid Redox Signal. 2011;14:579–92.CrossRefPubMed van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional target genes. Antioxid Redox Signal. 2011;14:579–92.CrossRefPubMed
14.
go back to reference Jin GS, Kondo E, Miyake T, Shibata M, Takashima T, Liu YX, et al. Expression and intracellular localization of FKHRL1 in mammary gland neoplasms. Acta Med Okayama. 2014;58:197–205. Jin GS, Kondo E, Miyake T, Shibata M, Takashima T, Liu YX, et al. Expression and intracellular localization of FKHRL1 in mammary gland neoplasms. Acta Med Okayama. 2014;58:197–205.
15.
go back to reference Fei M, Zhao Y, Wang Y, Lu M, Cheng C, Huang X. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest. 2009;27:52–9.CrossRefPubMed Fei M, Zhao Y, Wang Y, Lu M, Cheng C, Huang X. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest. 2009;27:52–9.CrossRefPubMed
16.
18.
go back to reference Brunet A, Bonni A, Zigmond MJ, Lin MJ, Juo P, Hu LS. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68.CrossRefPubMed Brunet A, Bonni A, Zigmond MJ, Lin MJ, Juo P, Hu LS. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68.CrossRefPubMed
19.
go back to reference Lin K, Dorman JB, Rodan A, Kenyon C. Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278:1319–22.CrossRefPubMed Lin K, Dorman JB, Rodan A, Kenyon C. Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278:1319–22.CrossRefPubMed
20.
go back to reference Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–6.CrossRefPubMed Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–6.CrossRefPubMed
21.
go back to reference Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Science. 2002;27:352–60.CrossRef Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Science. 2002;27:352–60.CrossRef
22.
go back to reference Chen J, Yusuf I, Andersen HM, Fruman DA. FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. J Immunol. 2006;176:2711–21.CrossRefPubMed Chen J, Yusuf I, Andersen HM, Fruman DA. FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. J Immunol. 2006;176:2711–21.CrossRefPubMed
23.
go back to reference Rosas M, Birkenkamp KU, Lammers JW, Koenderman L, Coffer PJ. Cytokine mediated suppression of TF-1 apoptosis requires PI3K activation and inhibition of Bim expression. FEBS Lett. 2005;579:191–8.CrossRefPubMed Rosas M, Birkenkamp KU, Lammers JW, Koenderman L, Coffer PJ. Cytokine mediated suppression of TF-1 apoptosis requires PI3K activation and inhibition of Bim expression. FEBS Lett. 2005;579:191–8.CrossRefPubMed
24.
go back to reference Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol. 2006;29:643–8.PubMedCentralPubMed Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol. 2006;29:643–8.PubMedCentralPubMed
25.
26.
go back to reference Yang JY, Chang CJ, Xia W, Wang Y, Wong KK, Engelman JA, et al. Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase inhibitor chemoresistance in human cancer. Cancer Res. 2010;70:4709–18.PubMedCentralCrossRefPubMed Yang JY, Chang CJ, Xia W, Wang Y, Wong KK, Engelman JA, et al. Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase inhibitor chemoresistance in human cancer. Cancer Res. 2010;70:4709–18.PubMedCentralCrossRefPubMed
27.
go back to reference Johansson M, Perssson JL. Cancer therapy: targeting cell cycle regulators. Anti-Cancer Agents Med Chem. 2008;8:723–31.CrossRef Johansson M, Perssson JL. Cancer therapy: targeting cell cycle regulators. Anti-Cancer Agents Med Chem. 2008;8:723–31.CrossRef
28.
go back to reference Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed
30.
go back to reference Saxena NK, Sharma D, Ding XK, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67:2497–507.PubMedCentralCrossRefPubMed Saxena NK, Sharma D, Ding XK, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67:2497–507.PubMedCentralCrossRefPubMed
31.
go back to reference Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.CrossRefPubMed Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.CrossRefPubMed
32.
go back to reference Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.CrossRefPubMed Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.CrossRefPubMed
33.
go back to reference Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. Journal of Ethnopharmacol. 2012;144:22–32.CrossRef Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. Journal of Ethnopharmacol. 2012;144:22–32.CrossRef
34.
go back to reference Sharma S, Mehta BK. in vitro antimicrobial efficacy of Centratherum anthelminticum seeds extracts. J Hyg Epidemiol Microbiol Immunol. 1991;35:157–61.PubMed Sharma S, Mehta BK. in vitro antimicrobial efficacy of Centratherum anthelminticum seeds extracts. J Hyg Epidemiol Microbiol Immunol. 1991;35:157–61.PubMed
35.
go back to reference Singhal KC, Sharma S, Mehta BK. Antifilarial activity of Centratherum anthelminticum seed extracts on Setaria cervi. Indian J Exp Biol. 1992;30:546–8.PubMed Singhal KC, Sharma S, Mehta BK. Antifilarial activity of Centratherum anthelminticum seed extracts on Setaria cervi. Indian J Exp Biol. 1992;30:546–8.PubMed
36.
go back to reference Arya A, Achoui M, Cheah SC, Abdelwahab SI, Narrima P, Mohan S, et al. Chloroform Fraction of Centratherum anthelminticum (L.) Seed Inhibits Tumor Necrosis Factor Alpha and Exhibits Pleotropic Bioactivities: Inhibitory Role in Human Tumor Cells. Evid Based Complement Alternat Med. 2012b;2012:627256. Arya A, Achoui M, Cheah SC, Abdelwahab SI, Narrima P, Mohan S, et al. Chloroform Fraction of Centratherum anthelminticum (L.) Seed Inhibits Tumor Necrosis Factor Alpha and Exhibits Pleotropic Bioactivities: Inhibitory Role in Human Tumor Cells. Evid Based Complement Alternat Med. 2012b;2012:627256.
37.
go back to reference Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One. 2013;8:e56643.PubMedCentralCrossRefPubMed Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One. 2013;8:e56643.PubMedCentralCrossRefPubMed
38.
go back to reference Riveraa ES, Andradeb N, Martin G, Melito G, Cricco G, Mohamad N, et al. Induction of mammary tumors in rat by intraperitoneal injection of NMU: histopathology and estral cycle influence. Cancer Lett. 1994;86:223–8.CrossRef Riveraa ES, Andradeb N, Martin G, Melito G, Cricco G, Mohamad N, et al. Induction of mammary tumors in rat by intraperitoneal injection of NMU: histopathology and estral cycle influence. Cancer Lett. 1994;86:223–8.CrossRef
39.
go back to reference Carlsson G, Gullberg B, Hafstrom L. Estimation of liver tumor volume using different formulas-an experimental study in rats. J Cancer Res Clin Oncol. 1983;105:20–3.CrossRefPubMed Carlsson G, Gullberg B, Hafstrom L. Estimation of liver tumor volume using different formulas-an experimental study in rats. J Cancer Res Clin Oncol. 1983;105:20–3.CrossRefPubMed
40.
go back to reference Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem. 2008;283:27707–16.PubMedCentralCrossRefPubMed Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem. 2008;283:27707–16.PubMedCentralCrossRefPubMed
41.
go back to reference Qi W, Weber CR, Wasland K, Savkovic SD. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer. 2011;11:219.PubMedCentralCrossRefPubMed Qi W, Weber CR, Wasland K, Savkovic SD. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer. 2011;11:219.PubMedCentralCrossRefPubMed
42.
go back to reference Andreeff M, Goodrich DW, Pardee AB, et al. Cell proliferation, differentiation, and apoptosis. In: Bast Jr RC, Kufe DW, Pollock RE, editors. Holland-Frei cancer medicine. 5th ed. Hamilton (ON): BC Decker; 2000. Andreeff M, Goodrich DW, Pardee AB, et al. Cell proliferation, differentiation, and apoptosis. In: Bast Jr RC, Kufe DW, Pollock RE, editors. Holland-Frei cancer medicine. 5th ed. Hamilton (ON): BC Decker; 2000.
43.
go back to reference Hibasami H, Iwase H, Yoshioka K, Takahashi H. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60cells. Int J Mol Med. 2005;16:233–6.PubMed Hibasami H, Iwase H, Yoshioka K, Takahashi H. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60cells. Int J Mol Med. 2005;16:233–6.PubMed
44.
go back to reference Rabi T, Shukla S, Gupta S. Betulinic acid suppresses constitutive and TNF alpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3cells. Mol Carcinog. 2008;47:964–73.PubMedCentralCrossRefPubMed Rabi T, Shukla S, Gupta S. Betulinic acid suppresses constitutive and TNF alpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3cells. Mol Carcinog. 2008;47:964–73.PubMedCentralCrossRefPubMed
45.
go back to reference Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, et al. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2015; 7: 34:41. Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, et al. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2015; 7: 34:41.
46.
go back to reference Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, et al. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement Altern Med. 2013;13:166.PubMedCentralCrossRefPubMed Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, et al. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement Altern Med. 2013;13:166.PubMedCentralCrossRefPubMed
47.
go back to reference Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors: regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 1813;2011:1938–45. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors: regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 1813;2011:1938–45.
48.
go back to reference Zanella F, Link W, Carnero A. Understanding FOXO, new views on old transcription factor. Curr Cancer Drug Targets. 2010;10:135–46.CrossRefPubMed Zanella F, Link W, Carnero A. Understanding FOXO, new views on old transcription factor. Curr Cancer Drug Targets. 2010;10:135–46.CrossRefPubMed
49.
go back to reference Hong ZY, Lee HJ, Shin DY, Kim SK, Seo M, Lee EJ. Inhibition of Akt/FOXO3a signaling by constitutively active FOXO3a suppresses growth of follicular thyroid cancer cell lines. Cancer Lett. 2012;314:34–40.CrossRefPubMed Hong ZY, Lee HJ, Shin DY, Kim SK, Seo M, Lee EJ. Inhibition of Akt/FOXO3a signaling by constitutively active FOXO3a suppresses growth of follicular thyroid cancer cell lines. Cancer Lett. 2012;314:34–40.CrossRefPubMed
50.
go back to reference Roy SK, Chen Q, Fu J, Shankar S, Srivastava RK. Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One. 2011;6:e25166.PubMedCentralCrossRefPubMed Roy SK, Chen Q, Fu J, Shankar S, Srivastava RK. Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One. 2011;6:e25166.PubMedCentralCrossRefPubMed
51.
go back to reference Stewart AZ, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24:139–45.CrossRefPubMed Stewart AZ, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24:139–45.CrossRefPubMed
52.
go back to reference Labaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11:847–62.CrossRefPubMed Labaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11:847–62.CrossRefPubMed
54.
go back to reference Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8:547–66.CrossRefPubMed Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8:547–66.CrossRefPubMed
55.
go back to reference Vermeulen K, Van Bockstaele DR, Berneman Z. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.CrossRefPubMed Vermeulen K, Van Bockstaele DR, Berneman Z. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.CrossRefPubMed
56.
go back to reference Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev. 2010;29:751–9.CrossRefPubMed Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev. 2010;29:751–9.CrossRefPubMed
57.
go back to reference Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHRL1. Curr Biol. 2000;10:1201–4.CrossRefPubMed Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHRL1. Curr Biol. 2000;10:1201–4.CrossRefPubMed
58.
go back to reference O’Connor LO, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S, et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 1998;17:384–95.PubMedCentralCrossRefPubMed O’Connor LO, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S, et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 1998;17:384–95.PubMedCentralCrossRefPubMed
59.
go back to reference Liu W, Bagaitkar J, Watabe K. Roles of AKT signal in breast cancer. Front Biosci. 2007;12:4011–9.CrossRefPubMed Liu W, Bagaitkar J, Watabe K. Roles of AKT signal in breast cancer. Front Biosci. 2007;12:4011–9.CrossRefPubMed
60.
go back to reference Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59:126–42.CrossRefPubMed Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59:126–42.CrossRefPubMed
61.
go back to reference Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813;2011:1978–86. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813;2011:1978–86.
62.
go back to reference Huang L, Wu SN, Xing D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3 beta signaling pathway. J Cell Physiol. 2011;226:588–601.CrossRefPubMed Huang L, Wu SN, Xing D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3 beta signaling pathway. J Cell Physiol. 2011;226:588–601.CrossRefPubMed
64.
go back to reference Weng SC, Kashida Y, Kulp SK, Wang D, Brueggemeier RW, Shapiro CL, et al. Sensitizing estrogen receptor-negative breast cancer cells to tamoxifen with OSU-03012, a novel celecoxib-derived phosphoinositide-dependent protein kinase-1/Akt signaling inhibitor. Mol Cancer Ther. 2008;7:800–8.CrossRefPubMed Weng SC, Kashida Y, Kulp SK, Wang D, Brueggemeier RW, Shapiro CL, et al. Sensitizing estrogen receptor-negative breast cancer cells to tamoxifen with OSU-03012, a novel celecoxib-derived phosphoinositide-dependent protein kinase-1/Akt signaling inhibitor. Mol Cancer Ther. 2008;7:800–8.CrossRefPubMed
65.
go back to reference Chandramohan V, Jeay S, Pianetti S, Sonenshein GE. Reciprocal control of Forkhead boxO3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels. J Immunol. 2004;172:5522–7.CrossRefPubMed Chandramohan V, Jeay S, Pianetti S, Sonenshein GE. Reciprocal control of Forkhead boxO3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels. J Immunol. 2004;172:5522–7.CrossRefPubMed
66.
go back to reference Sharma G, Kar S, Palit S, Das PK. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J Cell Physiol. 2011;227:1923–31.CrossRef Sharma G, Kar S, Palit S, Das PK. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J Cell Physiol. 2011;227:1923–31.CrossRef
67.
go back to reference Boreddy SR, Pramanik KC, Srivastava SK. Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin Cancer Res. 2011;17:1784–95.PubMedCentralCrossRefPubMed Boreddy SR, Pramanik KC, Srivastava SK. Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin Cancer Res. 2011;17:1784–95.PubMedCentralCrossRefPubMed
68.
go back to reference Bhalla S, Evens AM, Dai B, Prachand S, Gordon LI, Gartenhaus RB. The novel anti-MEK small molecule AZD6244 induces BIM-dependent and AKT-independent apoptosis in diffuse large B-cell lymphoma. Blood. 2011;118:1052–61.PubMedCentralCrossRefPubMed Bhalla S, Evens AM, Dai B, Prachand S, Gordon LI, Gartenhaus RB. The novel anti-MEK small molecule AZD6244 induces BIM-dependent and AKT-independent apoptosis in diffuse large B-cell lymphoma. Blood. 2011;118:1052–61.PubMedCentralCrossRefPubMed
69.
go back to reference Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC, et al. The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther. 2007;12:3169–79.CrossRef Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC, et al. The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther. 2007;12:3169–79.CrossRef
70.
go back to reference Kim SA, Kim HW, Kim DK, Kim SG, Park JC, Kang DW, et al. Rapid induction of malignant tumor in Sprague Dawley rats by injection of RK3E-ras cells. Cancer Lett. 2006;235:53–9.CrossRefPubMed Kim SA, Kim HW, Kim DK, Kim SG, Park JC, Kang DW, et al. Rapid induction of malignant tumor in Sprague Dawley rats by injection of RK3E-ras cells. Cancer Lett. 2006;235:53–9.CrossRefPubMed
72.
go back to reference Huawei Z, Davis CD. Down-regulation of proliferating cell nuclear antigen gene expression occurs during cell cycle arrest induced by human fecal water in colonic HT-29 cells. J Nutr. 2003;133:2682–7. Huawei Z, Davis CD. Down-regulation of proliferating cell nuclear antigen gene expression occurs during cell cycle arrest induced by human fecal water in colonic HT-29 cells. J Nutr. 2003;133:2682–7.
73.
go back to reference Fitzgibbons P1, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:966–78.PubMed Fitzgibbons P1, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:966–78.PubMed
Metadata
Title
Forkhead Box Transcription Factor (FOXO3a) mediates the cytotoxic effect of vernodalin in vitro and inhibits the breast tumor growth in vivo
Authors
Suresh Kumar Ananda Sadagopan
Nooshin Mohebali
Chung Yeng Looi
Mohadeseh Hasanpourghadi
Ashok Kumar Pandurangan
Aditya Arya
Hamed Karimian
Mohd Rais Mustafa
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0266-y

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine