Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

Authors: Wentao Qi, Christopher R Weber, Kaarin Wasland, Suzana D Savkovic

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity.

Methods

The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53.

Results

Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest.

Conclusion

These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Adlercreutz T: Soybean phytoestrogen intake and cancer risk. The Journal of Nutrition. 1995, 125 (3 Suppl): 757S-770S.PubMed Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Adlercreutz T: Soybean phytoestrogen intake and cancer risk. The Journal of Nutrition. 1995, 125 (3 Suppl): 757S-770S.PubMed
2.
go back to reference Park OJ, Surh YJ: Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicology Letters. 2004, 150 (1): 43-56. 10.1016/j.toxlet.2003.06.001.CrossRefPubMed Park OJ, Surh YJ: Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicology Letters. 2004, 150 (1): 43-56. 10.1016/j.toxlet.2003.06.001.CrossRefPubMed
3.
go back to reference Wang HK: The therapeutic potential of flavonoids. Expert Opinion on Investigational Drugs. 2000, 9 (9): 2103-2119. 10.1517/13543784.9.9.2103.CrossRefPubMed Wang HK: The therapeutic potential of flavonoids. Expert Opinion on Investigational Drugs. 2000, 9 (9): 2103-2119. 10.1517/13543784.9.9.2103.CrossRefPubMed
4.
go back to reference Barnes S, Peterson TG: Biochemical targets of the isoflavone genistein in tumor cell lines. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY. 1995, 208 (1): 103-108.CrossRef Barnes S, Peterson TG: Biochemical targets of the isoflavone genistein in tumor cell lines. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY. 1995, 208 (1): 103-108.CrossRef
5.
go back to reference Sarkar FH, Li Y: Soy isoflavones and cancer prevention. Cancer Investigation. 2003, 21 (5): 744-757. 10.1081/CNV-120023773.CrossRefPubMed Sarkar FH, Li Y: Soy isoflavones and cancer prevention. Cancer Investigation. 2003, 21 (5): 744-757. 10.1081/CNV-120023773.CrossRefPubMed
6.
go back to reference Georgaki S, Skopeliti M, Tsiatas M, Nicolaou KA, Ioannou K, Husband A, Bamias A, Dimopoulos MA, Constantinou AI, Tsitsilonis OE: Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2009, 13 (9B): 3929-3938. 10.1111/j.1582-4934.2009.00695.x.CrossRefPubMedPubMedCentral Georgaki S, Skopeliti M, Tsiatas M, Nicolaou KA, Ioannou K, Husband A, Bamias A, Dimopoulos MA, Constantinou AI, Tsitsilonis OE: Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2009, 13 (9B): 3929-3938. 10.1111/j.1582-4934.2009.00695.x.CrossRefPubMedPubMedCentral
7.
go back to reference Zhu Q, Meisinger J, Van Thiel DH, Zhang Y, Mobarhan S: Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells. Nutrition and Cancer. 2002, 42 (1): 131-140. 10.1207/S15327914NC421_18.CrossRefPubMed Zhu Q, Meisinger J, Van Thiel DH, Zhang Y, Mobarhan S: Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells. Nutrition and Cancer. 2002, 42 (1): 131-140. 10.1207/S15327914NC421_18.CrossRefPubMed
8.
go back to reference Chodon D, Ramamurty N, Sakthisekaran D: Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro. 2007, 21 (5): 887-891. 10.1016/j.tiv.2007.01.023.CrossRefPubMed Chodon D, Ramamurty N, Sakthisekaran D: Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro. 2007, 21 (5): 887-891. 10.1016/j.tiv.2007.01.023.CrossRefPubMed
9.
go back to reference Su SJ, Chow NH, Kung ML, Hung TC, Chang KL: Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutrition and Cancer. 2003, 45 (1): 113-123. 10.1207/S15327914NC4501_13.CrossRefPubMed Su SJ, Chow NH, Kung ML, Hung TC, Chang KL: Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutrition and Cancer. 2003, 45 (1): 113-123. 10.1207/S15327914NC4501_13.CrossRefPubMed
10.
go back to reference Cantley LC: The phosphoinositide 3-kinase pathway. Science (New York, NY. 2002, 296 (5573): 1655-1657. 10.1126/science.296.5573.1655.CrossRef Cantley LC: The phosphoinositide 3-kinase pathway. Science (New York, NY. 2002, 296 (5573): 1655-1657. 10.1126/science.296.5573.1655.CrossRef
11.
go back to reference Samuels Y, Ericson K: Oncogenic PI3K and its role in cancer. Current Opinion in Oncology. 2006, 18 (1): 77-82. 10.1097/01.cco.0000198021.99347.b9.CrossRefPubMed Samuels Y, Ericson K: Oncogenic PI3K and its role in cancer. Current Opinion in Oncology. 2006, 18 (1): 77-82. 10.1097/01.cco.0000198021.99347.b9.CrossRefPubMed
12.
go back to reference Takahashi M, Wakabayashi K: Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Science. 2004, 95 (6): 475-480. 10.1111/j.1349-7006.2004.tb03235.x.CrossRefPubMed Takahashi M, Wakabayashi K: Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Science. 2004, 95 (6): 475-480. 10.1111/j.1349-7006.2004.tb03235.x.CrossRefPubMed
13.
go back to reference Wang Z, Chen H: Genistein increases gene expression by demethylation of WNT5a promoter in colon cancer cell line SW1116. Anticancer Research. 2010, 30 (11): 4537-4545.PubMed Wang Z, Chen H: Genistein increases gene expression by demethylation of WNT5a promoter in colon cancer cell line SW1116. Anticancer Research. 2010, 30 (11): 4537-4545.PubMed
14.
go back to reference Bielecki A, Roberts J, Mehta R, Raju J: Estrogen receptor-beta mediates the inhibition of DLD-1 human colon adenocarcinoma cells by soy isoflavones. Nutrition and Cancer. 2011, 63 (1): 139-150.PubMed Bielecki A, Roberts J, Mehta R, Raju J: Estrogen receptor-beta mediates the inhibition of DLD-1 human colon adenocarcinoma cells by soy isoflavones. Nutrition and Cancer. 2011, 63 (1): 139-150.PubMed
15.
go back to reference Berner C, Aumuller E, Gnauck A, Nestelberger M, Just A, Haslberger AG: Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds. Annals of Nutrition & Metabolism. 2011, 57 (3-4): 183-189.CrossRef Berner C, Aumuller E, Gnauck A, Nestelberger M, Just A, Haslberger AG: Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds. Annals of Nutrition & Metabolism. 2011, 57 (3-4): 183-189.CrossRef
16.
go back to reference Rego RL, Foster NR, Smyrk TC, Le M, O'Connell MJ, Sargent DJ, Windschitl H, Sinicrope FA: Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. British Journal of Cancer. 2010, 102 (1): 165-172. 10.1038/sj.bjc.6605473.CrossRefPubMed Rego RL, Foster NR, Smyrk TC, Le M, O'Connell MJ, Sargent DJ, Windschitl H, Sinicrope FA: Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. British Journal of Cancer. 2010, 102 (1): 165-172. 10.1038/sj.bjc.6605473.CrossRefPubMed
17.
go back to reference Fichera A, Little N, Jagadeeswaran S, Dougherty U, Sehdev A, Mustafi R, Cerda S, Yuan W, Khare S, Tretiakova M, Gong C, Tallerico M, Cohen G, Joseph L, Hart J, Turner JR, Bissonnette M: Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis. Cancer Research. 2007, 67 (2): 827-835. 10.1158/0008-5472.CAN-05-3343.CrossRefPubMedPubMedCentral Fichera A, Little N, Jagadeeswaran S, Dougherty U, Sehdev A, Mustafi R, Cerda S, Yuan W, Khare S, Tretiakova M, Gong C, Tallerico M, Cohen G, Joseph L, Hart J, Turner JR, Bissonnette M: Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis. Cancer Research. 2007, 67 (2): 827-835. 10.1158/0008-5472.CAN-05-3343.CrossRefPubMedPubMedCentral
18.
go back to reference Modjtahedi H, Essapen S: Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities. Anti-cancer Drugs. 2009, 20 (10): 851-855. 10.1097/CAD.0b013e3283330590.CrossRefPubMed Modjtahedi H, Essapen S: Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities. Anti-cancer Drugs. 2009, 20 (10): 851-855. 10.1097/CAD.0b013e3283330590.CrossRefPubMed
19.
go back to reference Qi W, Weber CR, Wasland K, Roy H, Wali R, Joshi S, Savkovic SD: Tumor suppressor FOXO3 mediates signals from the EGF receptor to regulate proliferation of colonic cells. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2011, 300 (2): G264-272. 10.1152/ajpgi.00416.2010.CrossRefPubMed Qi W, Weber CR, Wasland K, Roy H, Wali R, Joshi S, Savkovic SD: Tumor suppressor FOXO3 mediates signals from the EGF receptor to regulate proliferation of colonic cells. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2011, 300 (2): G264-272. 10.1152/ajpgi.00416.2010.CrossRefPubMed
20.
go back to reference Burgering BM, Kops GJ: Cell cycle and death control: long live Forkheads. Trends Biochemical Science. 2002, 27 (7): 352-360. 10.1016/S0968-0004(02)02113-8.CrossRef Burgering BM, Kops GJ: Cell cycle and death control: long live Forkheads. Trends Biochemical Science. 2002, 27 (7): 352-360. 10.1016/S0968-0004(02)02113-8.CrossRef
21.
go back to reference Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T: A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Molecular Cancer. 2009, 8: 100-10.1186/1476-4598-8-100.CrossRefPubMedPubMedCentral Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T: A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Molecular Cancer. 2009, 8: 100-10.1186/1476-4598-8-100.CrossRefPubMedPubMedCentral
22.
go back to reference Yu Z, Li W, Liu F: Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Letters. 2004, 215 (2): 159-166. 10.1016/j.canlet.2004.06.010.CrossRefPubMed Yu Z, Li W, Liu F: Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Letters. 2004, 215 (2): 159-166. 10.1016/j.canlet.2004.06.010.CrossRefPubMed
23.
go back to reference Snoeks L, Weber CR, Turner JR, Bhattacharyya M, Wasland K, Savkovic SD: Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells. Infection and Immunity. 2008, 76 (10): 4677-4685. 10.1128/IAI.00227-08.CrossRefPubMedPubMedCentral Snoeks L, Weber CR, Turner JR, Bhattacharyya M, Wasland K, Savkovic SD: Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells. Infection and Immunity. 2008, 76 (10): 4677-4685. 10.1128/IAI.00227-08.CrossRefPubMedPubMedCentral
24.
go back to reference Snoeks L, Weber CR, Wasland K, Turner JR, Vainder C, Qi W, Savkovic SD: Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. Laboratory Investigation. 2009, 89 (9): 1053-1062. 10.1038/labinvest.2009.66.CrossRefPubMedPubMedCentral Snoeks L, Weber CR, Wasland K, Turner JR, Vainder C, Qi W, Savkovic SD: Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. Laboratory Investigation. 2009, 89 (9): 1053-1062. 10.1038/labinvest.2009.66.CrossRefPubMedPubMedCentral
25.
go back to reference Duffy C, Perez K, Partridge A: Implications of phytoestrogen intake for breast cancer. CA: A Cancer Journal for Clinicians. 2007, 57 (5): 260-277. 10.3322/CA.57.5.260. Duffy C, Perez K, Partridge A: Implications of phytoestrogen intake for breast cancer. CA: A Cancer Journal for Clinicians. 2007, 57 (5): 260-277. 10.3322/CA.57.5.260.
26.
go back to reference Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R: Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. International Journal of Cancer. 2008, 123 (3): 552-560. 10.1002/ijc.23590.CrossRefPubMed Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R: Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. International Journal of Cancer. 2008, 123 (3): 552-560. 10.1002/ijc.23590.CrossRefPubMed
27.
go back to reference Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R: Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Research. 2008, 68 (8): 2736-2744. 10.1158/0008-5472.CAN-07-2290.CrossRefPubMed Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R: Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Research. 2008, 68 (8): 2736-2744. 10.1158/0008-5472.CAN-07-2290.CrossRefPubMed
28.
go back to reference Lian F, Li Y, Bhuiyan M, Sarkar FH: p53-independent apoptosis induced by genistein in lung cancer cells. Nutrition and Cancer. 1999, 33 (2): 125-131. 10.1207/S15327914NC330202.CrossRefPubMed Lian F, Li Y, Bhuiyan M, Sarkar FH: p53-independent apoptosis induced by genistein in lung cancer cells. Nutrition and Cancer. 1999, 33 (2): 125-131. 10.1207/S15327914NC330202.CrossRefPubMed
29.
go back to reference Wang F, Marshall CB, Yamamoto K, Li GY, Plevin MJ, You H, Mak TW, Ikura M: Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. Journal of Molecular Biology. 2008, 384 (3): 590-603. 10.1016/j.jmb.2008.09.025.CrossRefPubMed Wang F, Marshall CB, Yamamoto K, Li GY, Plevin MJ, You H, Mak TW, Ikura M: Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. Journal of Molecular Biology. 2008, 384 (3): 590-603. 10.1016/j.jmb.2008.09.025.CrossRefPubMed
30.
go back to reference Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, Lane DP: p53 mutations in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America. 1990, 87 (19): 7555-7559. 10.1073/pnas.87.19.7555.CrossRefPubMedPubMedCentral Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, Lane DP: p53 mutations in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America. 1990, 87 (19): 7555-7559. 10.1073/pnas.87.19.7555.CrossRefPubMedPubMedCentral
31.
go back to reference Rand A, Glenn KS, Alvares CP, White MB, Thibodeau SM, Karnes WE: p53 functional loss in a colon cancer cell line with two missense mutations (218leu and 248trp) on separate alleles. Cancer Letters. 1996, 98 (2): 183-191.PubMed Rand A, Glenn KS, Alvares CP, White MB, Thibodeau SM, Karnes WE: p53 functional loss in a colon cancer cell line with two missense mutations (218leu and 248trp) on separate alleles. Cancer Letters. 1996, 98 (2): 183-191.PubMed
32.
go back to reference Jaiswal AS, Narayan S: p53-dependent transcriptional regulation of the APC promoter in colon cancer cells treated with DNA alkylating agents. The Journal of Biological Chemistry. 2001, 276 (21): 18193-18199. 10.1074/jbc.M101298200.CrossRefPubMed Jaiswal AS, Narayan S: p53-dependent transcriptional regulation of the APC promoter in colon cancer cells treated with DNA alkylating agents. The Journal of Biological Chemistry. 2001, 276 (21): 18193-18199. 10.1074/jbc.M101298200.CrossRefPubMed
33.
go back to reference Gerdes H: Colon cancer and the p53 oncogene. Gastroenterology. 1991, 100 (3): 842-843.PubMed Gerdes H: Colon cancer and the p53 oncogene. Gastroenterology. 1991, 100 (3): 842-843.PubMed
34.
go back to reference Funk WD, Pak DT, Karas RH, Wright WE, Shay JW: A transcriptionally active DNA-binding site for human p53 protein complexes. Molecular and Cellular Biology. 1992, 12 (6): 2866-2871.CrossRefPubMedPubMedCentral Funk WD, Pak DT, Karas RH, Wright WE, Shay JW: A transcriptionally active DNA-binding site for human p53 protein complexes. Molecular and Cellular Biology. 1992, 12 (6): 2866-2871.CrossRefPubMedPubMedCentral
35.
go back to reference Kwon TK, Nagel JE, Buchholz MA, Nordin AA: Characterization of the murine cyclin-dependent kinase inhibitor gene p27Kip1. Gene. 1996, 180 (1-2): 113-120. 10.1016/S0378-1119(96)00416-7.CrossRefPubMed Kwon TK, Nagel JE, Buchholz MA, Nordin AA: Characterization of the murine cyclin-dependent kinase inhibitor gene p27Kip1. Gene. 1996, 180 (1-2): 113-120. 10.1016/S0378-1119(96)00416-7.CrossRefPubMed
36.
go back to reference Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ: Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Molecular and Cellular Biology. 2000, 20 (24): 9138-9148. 10.1128/MCB.20.24.9138-9148.2000.CrossRefPubMedPubMedCentral Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ: Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Molecular and Cellular Biology. 2000, 20 (24): 9138-9148. 10.1128/MCB.20.24.9138-9148.2000.CrossRefPubMedPubMedCentral
37.
go back to reference Dalu A, Haskell JF, Coward L, Lamartiniere CA: Genistein, a component of soy, inhibits the expression of the EGF and ErbB2/Neu receptors in the rat dorsolateral prostate. The Prostate. 1998, 37 (1): 36-43. 10.1002/(SICI)1097-0045(19980915)37:1<36::AID-PROS6>3.0.CO;2-6.CrossRefPubMed Dalu A, Haskell JF, Coward L, Lamartiniere CA: Genistein, a component of soy, inhibits the expression of the EGF and ErbB2/Neu receptors in the rat dorsolateral prostate. The Prostate. 1998, 37 (1): 36-43. 10.1002/(SICI)1097-0045(19980915)37:1<36::AID-PROS6>3.0.CO;2-6.CrossRefPubMed
38.
go back to reference Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of Biological Chemistry. 1987, 262 (12): 5592-5595.PubMed Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of Biological Chemistry. 1987, 262 (12): 5592-5595.PubMed
39.
go back to reference Rajah TT, Du N, Drews N, Cohn R: Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology. 2009, 84 (2): 68-73. 10.1159/000226123.CrossRefPubMed Rajah TT, Du N, Drews N, Cohn R: Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology. 2009, 84 (2): 68-73. 10.1159/000226123.CrossRefPubMed
40.
go back to reference Kim EJ, Shin HK, Park JH: Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: a possible mechanism of the growth inhibitory effect of Genistein. Journal of Medicinal Food. 2005, 8 (4): 431-438. 10.1089/jmf.2005.8.431.CrossRefPubMed Kim EJ, Shin HK, Park JH: Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: a possible mechanism of the growth inhibitory effect of Genistein. Journal of Medicinal Food. 2005, 8 (4): 431-438. 10.1089/jmf.2005.8.431.CrossRefPubMed
41.
go back to reference Sheng H, Shao J, Townsend CM, Evers BM: Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut. 2003, 52 (10): 1472-1478. 10.1136/gut.52.10.1472.CrossRefPubMedPubMedCentral Sheng H, Shao J, Townsend CM, Evers BM: Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut. 2003, 52 (10): 1472-1478. 10.1136/gut.52.10.1472.CrossRefPubMedPubMedCentral
42.
go back to reference Medema RH, Kops GJ, Bos JL, Burgering BM: AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404 (6779): 782-787. 10.1038/35008115.CrossRefPubMed Medema RH, Kops GJ, Bos JL, Burgering BM: AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404 (6779): 782-787. 10.1038/35008115.CrossRefPubMed
43.
go back to reference Eto I: Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell International. 2006, 6: 20-10.1186/1475-2867-6-20.CrossRefPubMedPubMedCentral Eto I: Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell International. 2006, 6: 20-10.1186/1475-2867-6-20.CrossRefPubMedPubMedCentral
44.
go back to reference Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S, Hursting SD: Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Molecular Carcinogenesis. 2000, 29 (2): 92-102. 10.1002/1098-2744(200010)29:2<92::AID-MC6>3.0.CO;2-Q.CrossRefPubMed Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S, Hursting SD: Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Molecular Carcinogenesis. 2000, 29 (2): 92-102. 10.1002/1098-2744(200010)29:2<92::AID-MC6>3.0.CO;2-Q.CrossRefPubMed
45.
go back to reference Jones JT, Akita RW, Sliwkowski MX: Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Letters. 1999, 447 (2-3): 227-231. 10.1016/S0014-5793(99)00283-5.CrossRefPubMed Jones JT, Akita RW, Sliwkowski MX: Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Letters. 1999, 447 (2-3): 227-231. 10.1016/S0014-5793(99)00283-5.CrossRefPubMed
46.
go back to reference You H, Yamamoto K, Mak TW: Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103 (24): 9051-9056. 10.1073/pnas.0600889103.CrossRefPubMedPubMedCentral You H, Yamamoto K, Mak TW: Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103 (24): 9051-9056. 10.1073/pnas.0600889103.CrossRefPubMedPubMedCentral
47.
go back to reference Miyaguchi Y, Tsuchiya K, Sakamoto K: P53 negatively regulates the transcriptional activity of FOXO3a under oxidative stress. Cell Biology International. 2009, 33 (8): 853-860. 10.1016/j.cellbi.2009.04.017.CrossRefPubMed Miyaguchi Y, Tsuchiya K, Sakamoto K: P53 negatively regulates the transcriptional activity of FOXO3a under oxidative stress. Cell Biology International. 2009, 33 (8): 853-860. 10.1016/j.cellbi.2009.04.017.CrossRefPubMed
48.
go back to reference Park JH, Oh EJ, Choi YH, Kang CD, Kang HS, Kim DK, Kang KI, Yoo MA: Synergistic effects of dexamethasone and genistein on the expression of Cdk inhibitor p21WAF1/CIP1 in human hepatocellular and colorectal carcinoma cells. International Journal of Oncology. 2001, 18 (5): 997-1002.PubMed Park JH, Oh EJ, Choi YH, Kang CD, Kang HS, Kim DK, Kang KI, Yoo MA: Synergistic effects of dexamethasone and genistein on the expression of Cdk inhibitor p21WAF1/CIP1 in human hepatocellular and colorectal carcinoma cells. International Journal of Oncology. 2001, 18 (5): 997-1002.PubMed
49.
go back to reference Weber G, Shen F, Yang H, Prajda N, Li W: Amplification of signal transduction capacity and down-regulation by drugs. Advances in Enzyme Regulation. 1999, 39: 51-66. 10.1016/S0065-2571(98)00027-2.CrossRefPubMed Weber G, Shen F, Yang H, Prajda N, Li W: Amplification of signal transduction capacity and down-regulation by drugs. Advances in Enzyme Regulation. 1999, 39: 51-66. 10.1016/S0065-2571(98)00027-2.CrossRefPubMed
50.
go back to reference Hwang JT, Ha J, Park OJ: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochemical and Biophysical Research Communications. 2005, 332 (2): 433-440. 10.1016/j.bbrc.2005.04.143.CrossRefPubMed Hwang JT, Ha J, Park OJ: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochemical and Biophysical Research Communications. 2005, 332 (2): 433-440. 10.1016/j.bbrc.2005.04.143.CrossRefPubMed
Metadata
Title
Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity
Authors
Wentao Qi
Christopher R Weber
Kaarin Wasland
Suzana D Savkovic
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-219

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine