Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research article

Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8

Authors: Wei Li, Ying Zhou, Jin Yang, Xu Zhang, Huanhuan Zhang, Ting Zhang, Shaolin Zhao, Ping Zheng, Juan Huo, Huiyi Wu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

Bone marrow mesenchymal stem cells (BM-MSCs) have been identified to be closely associated with tumor growth and progression. However, the roles of tumor-resident MSCs in cancer have not been thoroughly clarified. This study was to investigate the regulating effect of gastric cancer-derived MSCs (GC-MSCs) on gastric cancer and elucidate the underlying mechanism.

Methods

GC-MSCs were isolated from primary human gastric cancer tissues and characterized. The effect of GC-MSCs on gastric cancer cell proliferation was analyzed by MTT assay and colony formation assay. Transwell migration assay was performed to evaluate the influence of GC-MSCs in gastric cancer cell migration. The regulating effects of interactions between gastric cancer cells and GC-MSCs on their pro-angiogenic abilities were analyzed in a co-culture system, with the expression, and secretion of pro-angiogenic factors detected by RT-PCR and Luminex assay. Tube formation assay was used to further validate the angiogenic capability of gastric cancer cells or GC-MSCs. Cytokine profiles in the supernatant of GC-MSCs were screened by Luminex assay and neutralizing antibody was used to identify the key effective cytokines. The activations of Akt and Erk1/2 in gastric caner cells were detected by Western blot.

Results

GC-MSC treatment enhanced the proliferation and migration of BGC-823 and MKN-28 cells, which was more potently than MSCs from adjacent non-cancerous tissues (GCN-MSCs) or bone marrow (BM-MSCs). Higher expression levels of pro-angiogenic factors were detected in GC-MSCs than GCN-MSCs or BM-MSCs. After 10 % GC-MSC-CM treatment, BGC-823, and MKN-28 cells expressed increased levels of pro-angiogenic factors and facilitated tube formation more potently than cancer cells alone. Furthermore, GC-MSCs produced an extremely higher level of interleukin-8 (IL-8) than GCN-MSCs or BM-MSCs. Blockade of IL-8 by neutralizing antibody significantly attenuated the tumor-promoting effect of GC-MSCs. In addition, 10 % CM of IL-8-secreted GC-MSCs induced the activations of Akt or Erk1/2 pathway in BGC-823 and MKN-28 cells.

Conclusion

Tumor-resident GC-MSCs promote gastric cancer growth and progression more efficiently than GCN-MSCs or BM-MSCs through a considerable secretion of IL-8, which could be a possible target for gastric cancer therapy.
Literature
1.
go back to reference María BP, Pelayo C. Gastric cancer: overview. Colomb Med. 2013;44:192–201. María BP, Pelayo C. Gastric cancer: overview. Colomb Med. 2013;44:192–201.
2.
go back to reference Ahmet B. Treatment options in patients with metastatic gastric cancer: current status and future perspectives. World J Gastroenterol. 2014;20:3905–15.CrossRef Ahmet B. Treatment options in patients with metastatic gastric cancer: current status and future perspectives. World J Gastroenterol. 2014;20:3905–15.CrossRef
3.
go back to reference Yuan-Yu W, Li L, Zhong-Sheng Z, Yong-Xiang W, Zai-Yuan Y, Hou-Quan T. L1 and epithelial cell adhesion molecules associated with gastric cancer progression and prognosis in examination of specimens from 601 patients. J Exp Clin Cancer Res. 2013;32:66.CrossRef Yuan-Yu W, Li L, Zhong-Sheng Z, Yong-Xiang W, Zai-Yuan Y, Hou-Quan T. L1 and epithelial cell adhesion molecules associated with gastric cancer progression and prognosis in examination of specimens from 601 patients. J Exp Clin Cancer Res. 2013;32:66.CrossRef
4.
go back to reference Long L, Zhihui Y, Weixing Z, Bing Y, Qunhao G, Jianpeng J, et al. Decreased expression of IGFBP7 was a poor prognosis predictor for gastric cancer patients. Tumour Biol. 2014;35:8875–81.CrossRef Long L, Zhihui Y, Weixing Z, Bing Y, Qunhao G, Jianpeng J, et al. Decreased expression of IGFBP7 was a poor prognosis predictor for gastric cancer patients. Tumour Biol. 2014;35:8875–81.CrossRef
5.
go back to reference Joanna B, Elodie V, Jérôme P, Sandrine M, Guy B, Etienne M, et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol. 2013;4:490. Joanna B, Elodie V, Jérôme P, Sandrine M, Guy B, Etienne M, et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol. 2013;4:490.
7.
go back to reference Jaleh B, Yadollah O. Dysregulated pH in tumor microenvironment checkmates cancer therapy. BioImpacts. 2013;3:149–62. Jaleh B, Yadollah O. Dysregulated pH in tumor microenvironment checkmates cancer therapy. BioImpacts. 2013;3:149–62.
8.
go back to reference Annarosa A, Olivia C, Lapo B. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond B Biol Sci. 2014;369:1471–2970. Annarosa A, Olivia C, Lapo B. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond B Biol Sci. 2014;369:1471–2970.
9.
go back to reference Venugopal T, Elizabeth LD, Clifford S, Subbaya S, Emil L. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl Res. 2014;164:359–65.CrossRef Venugopal T, Elizabeth LD, Clifford S, Subbaya S, Emil L. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl Res. 2014;164:359–65.CrossRef
10.
go back to reference Tuula S, Marilena V, Ibrahim OB, Pia N, Carolina CB, Ayelet ZH, et al. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Exp Cell Res. 2014;325:58–64.CrossRef Tuula S, Marilena V, Ibrahim OB, Pia N, Carolina CB, Ayelet ZH, et al. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches. Exp Cell Res. 2014;325:58–64.CrossRef
11.
go back to reference Andrea HJ, Yong XW, Peter W, Charles SC. Mesenchymal stromal cell dependent regression of pulmonary metastasis from Ewing’s. Front Pediatr. 2014;2:44. Andrea HJ, Yong XW, Peter W, Charles SC. Mesenchymal stromal cell dependent regression of pulmonary metastasis from Ewing’s. Front Pediatr. 2014;2:44.
12.
go back to reference Masanao N, Yoshiaki A, Kanna N, Hiroyuki I, Kei O, Suguru N, et al. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation. Stem Cells. 2014;32:913–25.CrossRef Masanao N, Yoshiaki A, Kanna N, Hiroyuki I, Kei O, Suguru N, et al. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation. Stem Cells. 2014;32:913–25.CrossRef
14.
go back to reference Ting Z, Yuk WL, Yun FR, Tin YC, Xiao HJ, Gang L. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 2013;4:70.CrossRef Ting Z, Yuk WL, Yun FR, Tin YC, Xiao HJ, Gang L. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 2013;4:70.CrossRef
15.
go back to reference Guangwen R, Xin Z, Ying W, Xin Z, Xiaodong C, Chunliang X, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNF-α. Cell Stem Cell. 2012;11:812–24.CrossRef Guangwen R, Xin Z, Ying W, Xin Z, Xiaodong C, Chunliang X, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNF-α. Cell Stem Cell. 2012;11:812–24.CrossRef
16.
go back to reference Eun-Kyung K, Hye-Jung K, Young-II Y, Jong TK, Min-Young C, Chang SC, et al. Endogenous gastric-resident mesenchymal stem cells contribute to formation of cancer stroma and progression of gastric cancer. Korean J Pathol. 2013;47:507–18.CrossRef Eun-Kyung K, Hye-Jung K, Young-II Y, Jong TK, Min-Young C, Chang SC, et al. Endogenous gastric-resident mesenchymal stem cells contribute to formation of cancer stroma and progression of gastric cancer. Korean J Pathol. 2013;47:507–18.CrossRef
17.
go back to reference Jong-Hyuk K, Aric MF, Katie LA, Ashley JG, Milcah CS, Sally R, et al. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment. Exp Cell Res. 2014;323:155–64.CrossRef Jong-Hyuk K, Aric MF, Katie LA, Ashley JG, Milcah CS, Sally R, et al. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment. Exp Cell Res. 2014;323:155–64.CrossRef
18.
go back to reference Qi S, Fengkai S, Ben W, Song L, Weibo N, Enyu L, et al. Interleukin-8 promotes cell migration through integrin αvβ6 upregulation in colorectal cancer. Cancer Lett. 2014;354:245–53.CrossRef Qi S, Fengkai S, Ben W, Song L, Weibo N, Enyu L, et al. Interleukin-8 promotes cell migration through integrin αvβ6 upregulation in colorectal cancer. Cancer Lett. 2014;354:245–53.CrossRef
19.
go back to reference Ko EL, Pham NK, Yong X, Jung SP, Young EJ, Kyung KK, et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol. 2013;19:8192–202.CrossRef Ko EL, Pham NK, Yong X, Jung SP, Young EJ, Kyung KK, et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol. 2013;19:8192–202.CrossRef
20.
go back to reference Yin J, Zeng F, Wu N, Kang K, Yang Z, Yang H. Interleukin-8 promotes human ovarian cancer cell migration by epithelial–mesenchymal transition induction in vitro. Clin Transl Oncol. 2014. doi:10.1007/s12094-014–1240–4.PubMed Yin J, Zeng F, Wu N, Kang K, Yang Z, Yang H. Interleukin-8 promotes human ovarian cancer cell migration by epithelial–mesenchymal transition induction in vitro. Clin Transl Oncol. 2014. doi:10.1007/s12094-014–1240–4.PubMed
21.
go back to reference Lars LE, Ying E, Tone MT, Gustav PB, Ida RKB, Geir B. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival. BMC Cancer. 2013;13:586.CrossRef Lars LE, Ying E, Tone MT, Gustav PB, Ida RKB, Geir B. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival. BMC Cancer. 2013;13:586.CrossRef
22.
go back to reference Liang-kuan B, Nan Z, Cheng L, Fu-Ding L, Tian-Xin L, Xu-Jun X, et al. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells. Urol Oncol. 2014;32:607–12.CrossRef Liang-kuan B, Nan Z, Cheng L, Fu-Ding L, Tian-Xin L, Xu-Jun X, et al. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells. Urol Oncol. 2014;32:607–12.CrossRef
23.
go back to reference Yun H, Chung HR, Jin AJ, Seong MK, Chang HJ, Sin-Soo J. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int. 2014;38:1050–9. Yun H, Chung HR, Jin AJ, Seong MK, Chang HJ, Sin-Soo J. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int. 2014;38:1050–9.
24.
go back to reference Huiling C, Wenrong X, Hui Q, Wei Z, Yongmin Y, Hongxing Z, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009;274:61–71.CrossRef Huiling C, Wenrong X, Hui Q, Wei Z, Yongmin Y, Hongxing Z, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009;274:61–71.CrossRef
25.
go back to reference Pedro BS, Valentina G, Franco B, Paola C. Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta. 1836;2013:321–35. Pedro BS, Valentina G, Franco B, Paola C. Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta. 1836;2013:321–35.
26.
go back to reference Anastasia G, Sven K, Michael G, Stefan A, Angela RW. Hypoxia-conditioned media allows species-specific attraction of bone marrow stromal cells without need for recombinant proteins. BMC Vet Res. 2014;10:56.CrossRef Anastasia G, Sven K, Michael G, Stefan A, Angela RW. Hypoxia-conditioned media allows species-specific attraction of bone marrow stromal cells without need for recombinant proteins. BMC Vet Res. 2014;10:56.CrossRef
27.
go back to reference Ren G, Liu Y, Zhao X, Zhang J, Zheng B, Yuan ZR, et al. Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene. 2014;33:4016–20.CrossRefPubMed Ren G, Liu Y, Zhao X, Zhang J, Zheng B, Yuan ZR, et al. Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene. 2014;33:4016–20.CrossRefPubMed
28.
go back to reference Jianmei G, Hui Q, Li S, Xu Z, Wei Z, Ling H, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-b/Smad pathway. Plos One. 2012;7, e52465.CrossRef Jianmei G, Hui Q, Li S, Xu Z, Wei Z, Ling H, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-b/Smad pathway. Plos One. 2012;7, e52465.CrossRef
29.
go back to reference Mitchell RC, Floriane MI, Sarah KB. Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and -2. Mol Carcinog. 2014. doi:10.1002/mc.22178. Mitchell RC, Floriane MI, Sarah KB. Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and -2. Mol Carcinog. 2014. doi:10.1002/mc.22178.
30.
go back to reference Ihn H, Miyong Y, Eun-Ok K, Bonglee K, Min-Hyung J, Sung-Hoon K. Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Res Ther. 2014;5:54.CrossRef Ihn H, Miyong Y, Eun-Ok K, Bonglee K, Min-Hyung J, Sung-Hoon K. Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Res Ther. 2014;5:54.CrossRef
31.
go back to reference Scott AB, Laurence B, Yves ADC. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13:962–75.CrossRef Scott AB, Laurence B, Yves ADC. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13:962–75.CrossRef
32.
go back to reference Chunfu Z, Wei Z, Yan X, Qiaolin C, Wei Z, Xiaochun S. Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro. Oncology Letters. 2013;6:1577–82. Chunfu Z, Wei Z, Yan X, Qiaolin C, Wei Z, Xiaochun S. Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro. Oncology Letters. 2013;6:1577–82.
33.
go back to reference Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013;32:4343–54.CrossRefPubMed Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013;32:4343–54.CrossRefPubMed
Metadata
Title
Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8
Authors
Wei Li
Ying Zhou
Jin Yang
Xu Zhang
Huanhuan Zhang
Ting Zhang
Shaolin Zhao
Ping Zheng
Juan Huo
Huiyi Wu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0172-3

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine