Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2014

Open Access 01-12-2014 | Research

Pegylated arginine deiminase synergistically increases the cytotoxicity of gemcitabine in human pancreatic cancer

Authors: Rouzbeh Daylami, Diego J Muilenburg, Subbulakshmi Virudachalam, Richard J Bold

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2014

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma has proven to be one of the most chemo-resistant among all solid organ malignancies. Several mechanisms of resistance have been described, though few reports of strategies to overcome this chemo-resistance have been successful in restoring sensitivity to the primary chemotherapy (gemcitabine) and enter the clinical treatment arena.

Methods

We examined the ability of cellular arginine depletion through treatment with PEG-ADI to alter in vitro and in vivo cytotoxicity of gemcitabine. The effect on levels of key regulators of gemcitabine efficacy (e.g. RRM2, hENT1, and dCK) were examined.

Results

Combination of PEG-ADI and gemcitabine substantially increases growth arrest, leading to increased tumor response in vivo. PEG-ADI is a strong inhibitor of the gemcitabine-induced overexpression of ribonucleotide reductase subunit M2 (RRM2) levels both in vivo and in vitro, which is associated with gemcitabine resistance. This mechanism is through the abrogation of the gemcitabine-mediated inhibitory effect on E2F-1 function, a transcriptional repressor of RRM2.

Conclusion

The ability to alter gemcitabine resistance in a targeted manner by inducing metabolic stress holds great promise in the treatment of advanced pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, von Hoff DD: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997, 6: 2403-2413. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, von Hoff DD: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997, 6: 2403-2413.
2.
go back to reference Tang Y, Liu F, Zheng C, Sun S, Jiang Y: Knockdown of clusterin sensitizes pancreatic cancer cells to gemcitabine chemotherapy by ERK1/2 inactivation. J Exp Clin Cancer Res. 2012, 31: 73-10.1186/1756-9966-31-73.PubMedCentralCrossRefPubMed Tang Y, Liu F, Zheng C, Sun S, Jiang Y: Knockdown of clusterin sensitizes pancreatic cancer cells to gemcitabine chemotherapy by ERK1/2 inactivation. J Exp Clin Cancer Res. 2012, 31: 73-10.1186/1756-9966-31-73.PubMedCentralCrossRefPubMed
3.
go back to reference Awasthi N, Zhang C, Hinz S, Schwarz MA, Schwarz RE: Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. J Exp Clin Cancer Res. 2013, 32: 12-10.1186/1756-9966-32-12.PubMedCentralCrossRefPubMed Awasthi N, Zhang C, Hinz S, Schwarz MA, Schwarz RE: Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. J Exp Clin Cancer Res. 2013, 32: 12-10.1186/1756-9966-32-12.PubMedCentralCrossRefPubMed
4.
go back to reference Fahy BN, Schlieman MG, Virudachalam S, Bold RJ: Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res. 2003, 113: 88-95. 10.1016/S0022-4804(03)00201-4.CrossRefPubMed Fahy BN, Schlieman MG, Virudachalam S, Bold RJ: Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res. 2003, 113: 88-95. 10.1016/S0022-4804(03)00201-4.CrossRefPubMed
5.
go back to reference Mini E, Nobili S, Caciagli B, Landini I, Mazzei T: Cellular pharmacology of gemcitabine. Ann Oncol. 2006, 17 (Supplement 5): v7-v12. 10.1093/annonc/mdj941.CrossRefPubMed Mini E, Nobili S, Caciagli B, Landini I, Mazzei T: Cellular pharmacology of gemcitabine. Ann Oncol. 2006, 17 (Supplement 5): v7-v12. 10.1093/annonc/mdj941.CrossRefPubMed
6.
go back to reference Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I, van den Ijssel P, Ylstra B, Peters GJ: In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005, 65 (20): 9510-9516. 10.1158/0008-5472.CAN-05-0989.CrossRefPubMed Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I, van den Ijssel P, Ylstra B, Peters GJ: In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005, 65 (20): 9510-9516. 10.1158/0008-5472.CAN-05-0989.CrossRefPubMed
7.
go back to reference Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA: An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004, 64 (11): 3761-3766. 10.1158/0008-5472.CAN-03-3363.CrossRefPubMed Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA: An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004, 64 (11): 3761-3766. 10.1158/0008-5472.CAN-03-3363.CrossRefPubMed
8.
go back to reference van der Wilt CL, Kroep JR, Bergman AM, Loves WJ, Alvarez E, Talianidis I, Eriksson S, van Groeningen CJ, Pinedo HM, Peters GJ: The role of deoxycytidine kinase in gemcitabine cytotoxicity. Adv Exp Med Biol. 2000, 486: 287-290. 10.1007/0-306-46843-3_56.CrossRefPubMed van der Wilt CL, Kroep JR, Bergman AM, Loves WJ, Alvarez E, Talianidis I, Eriksson S, van Groeningen CJ, Pinedo HM, Peters GJ: The role of deoxycytidine kinase in gemcitabine cytotoxicity. Adv Exp Med Biol. 2000, 486: 287-290. 10.1007/0-306-46843-3_56.CrossRefPubMed
9.
go back to reference Bergman AM, Pinedo HM, Peters GJ: Determinants of resistance to 2′, 2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002, 5: 19-33. 10.1016/S1368-7646(02)00002-X.CrossRefPubMed Bergman AM, Pinedo HM, Peters GJ: Determinants of resistance to 2′, 2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002, 5: 19-33. 10.1016/S1368-7646(02)00002-X.CrossRefPubMed
10.
go back to reference Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004, 23 (8): 1539-1548. 10.1038/sj.onc.1207272.CrossRefPubMed Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004, 23 (8): 1539-1548. 10.1038/sj.onc.1207272.CrossRefPubMed
11.
go back to reference Réjiba S, Bigand C, Parmentier C, Hajri A: Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies. Neoplasia. 2009, 11 (7): 637-650.PubMedCentralCrossRefPubMed Réjiba S, Bigand C, Parmentier C, Hajri A: Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies. Neoplasia. 2009, 11 (7): 637-650.PubMedCentralCrossRefPubMed
12.
go back to reference Lin ZP, Belcourt MF, Carbone R, Eaton JS, Penketh PG, Shadel GS, Cory JG, Sartorelli AC: Excess ribonucleotide reductase R2 subunits coordinate the S phase checkpoint to facilitate DNA damage repair and recovery from replication stress. Biochem Pharmacol. 2007, 73: 760-772. 10.1016/j.bcp.2006.11.014.CrossRefPubMed Lin ZP, Belcourt MF, Carbone R, Eaton JS, Penketh PG, Shadel GS, Cory JG, Sartorelli AC: Excess ribonucleotide reductase R2 subunits coordinate the S phase checkpoint to facilitate DNA damage repair and recovery from replication stress. Biochem Pharmacol. 2007, 73: 760-772. 10.1016/j.bcp.2006.11.014.CrossRefPubMed
13.
go back to reference Chabes AL, Björklund S, Thelander L: S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem. 2004, 279 (11): 10796-10807. 10.1074/jbc.M312482200.CrossRefPubMed Chabes AL, Björklund S, Thelander L: S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem. 2004, 279 (11): 10796-10807. 10.1074/jbc.M312482200.CrossRefPubMed
14.
go back to reference Jung CP, Motwani MV, Schwartz GK: Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res. 2001, 7 (8): 2527-2536.PubMed Jung CP, Motwani MV, Schwartz GK: Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res. 2001, 7 (8): 2527-2536.PubMed
15.
go back to reference Yoshimoto T, Boehm M, Olive M, Crook MF, San H, Langenickel T, Nabel EG: The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp Cell Res. 2006, 312 (11): 2040-2053. 10.1016/j.yexcr.2006.03.001.CrossRefPubMed Yoshimoto T, Boehm M, Olive M, Crook MF, San H, Langenickel T, Nabel EG: The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp Cell Res. 2006, 312 (11): 2040-2053. 10.1016/j.yexcr.2006.03.001.CrossRefPubMed
16.
go back to reference Radisavljevic Z: Inactivated tumor suppressor Rb by nitric oxide promotes mitosis in human breast cancer cells. J Cell Biochem. 2004, 92 (1): 1-5. 10.1002/jcb.20063.CrossRefPubMed Radisavljevic Z: Inactivated tumor suppressor Rb by nitric oxide promotes mitosis in human breast cancer cells. J Cell Biochem. 2004, 92 (1): 1-5. 10.1002/jcb.20063.CrossRefPubMed
17.
go back to reference Bowles TL, Kim R, Galante J, Parsons CM, Virudachalam S, Kung HJ, Bold RJ: Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 2008, 123 (8): 1950-1955. 10.1002/ijc.23723.PubMedCentralCrossRefPubMed Bowles TL, Kim R, Galante J, Parsons CM, Virudachalam S, Kung HJ, Bold RJ: Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 2008, 123 (8): 1950-1955. 10.1002/ijc.23723.PubMedCentralCrossRefPubMed
18.
go back to reference Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, Ritter G: Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer. 2012, 106 (2): 324-332. 10.1038/bjc.2011.524.PubMedCentralCrossRefPubMed Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, Ritter G: Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer. 2012, 106 (2): 324-332. 10.1038/bjc.2011.524.PubMedCentralCrossRefPubMed
19.
go back to reference Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC: Pegylated recombinant human arginase (rhArg-peg5,000 mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007, 67 (1): 309-317. 10.1158/0008-5472.CAN-06-1945.CrossRefPubMed Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC: Pegylated recombinant human arginase (rhArg-peg5,000 mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007, 67 (1): 309-317. 10.1158/0008-5472.CAN-06-1945.CrossRefPubMed
20.
go back to reference Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA: Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002, 62 (19): 5443-5450.PubMed Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA: Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002, 62 (19): 5443-5450.PubMed
21.
go back to reference Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, Beneduce G, DeRosa V, Izzo F, Melucci MT, Ensor CM, Prestayko AW, Holtsberg FW, Bomalaski JS, Clark MA, Savaraj N, Feun LG, Logan TF: Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol. 2005, 23 (30): 7660-7668. 10.1200/JCO.2005.02.0933.CrossRefPubMed Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, Beneduce G, DeRosa V, Izzo F, Melucci MT, Ensor CM, Prestayko AW, Holtsberg FW, Bomalaski JS, Clark MA, Savaraj N, Feun LG, Logan TF: Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol. 2005, 23 (30): 7660-7668. 10.1200/JCO.2005.02.0933.CrossRefPubMed
22.
go back to reference Kim JH, Kim JH, Yu YS, Kim DH, Min BH, Kim KW: Anti-tumor activity of arginine deiminase via arginine deprivation in retinoblastoma. Oncol Rep. 2007, 18 (6): 1373-1377.PubMed Kim JH, Kim JH, Yu YS, Kim DH, Min BH, Kim KW: Anti-tumor activity of arginine deiminase via arginine deprivation in retinoblastoma. Oncol Rep. 2007, 18 (6): 1373-1377.PubMed
23.
go back to reference Feun LG, Marini A, Walker G, Elgart G, Moffat F, Rodgers SE, Wu CJ, You M, Wanopaichitr M, Kuo MT, Sisson W, Jungbluth AA, Bomalaski J, Savaraj N: Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer. 2012, 106 (9): 1481-1485. 10.1038/bjc.2012.106.PubMedCentralCrossRefPubMed Feun LG, Marini A, Walker G, Elgart G, Moffat F, Rodgers SE, Wu CJ, You M, Wanopaichitr M, Kuo MT, Sisson W, Jungbluth AA, Bomalaski J, Savaraj N: Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer. 2012, 106 (9): 1481-1485. 10.1038/bjc.2012.106.PubMedCentralCrossRefPubMed
24.
go back to reference Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang TY, Bold RJ, Kung HJ: Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009, 69 (2): 700-708. 10.1158/0008-5472.CAN-08-3157.PubMedCentralCrossRefPubMed Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang TY, Bold RJ, Kung HJ: Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009, 69 (2): 700-708. 10.1158/0008-5472.CAN-08-3157.PubMedCentralCrossRefPubMed
25.
go back to reference Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW: Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol. 2010, 30 (22): 5260-5272. 10.1128/MCB.00484-10.PubMedCentralCrossRefPubMed Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW: Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol. 2010, 30 (22): 5260-5272. 10.1128/MCB.00484-10.PubMedCentralCrossRefPubMed
26.
go back to reference Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, Lopez-Berestein G, Vivas-Meija PE, Sood AK, McConkey DJ, Logsdon CD: Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008, 14 (24): 8143-8151. 10.1158/1078-0432.CCR-08-1539.PubMedCentralCrossRefPubMed Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, Lopez-Berestein G, Vivas-Meija PE, Sood AK, McConkey DJ, Logsdon CD: Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008, 14 (24): 8143-8151. 10.1158/1078-0432.CCR-08-1539.PubMedCentralCrossRefPubMed
27.
go back to reference Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E, Tanaka M: Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008, 28 (4B): 2205-2212.PubMed Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E, Tanaka M: Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008, 28 (4B): 2205-2212.PubMed
28.
go back to reference Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petrillo A, Ascierto PA, Curley SA, Izzo F: Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol. 2010, 28 (13): 2220-2226. 10.1200/JCO.2009.26.7765.CrossRefPubMed Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petrillo A, Ascierto PA, Curley SA, Izzo F: Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol. 2010, 28 (13): 2220-2226. 10.1200/JCO.2009.26.7765.CrossRefPubMed
29.
go back to reference Phillips MM, Sheaff MT, Szlosarek PW: Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013, 45 (4): 251-262. 10.4143/crt.2013.45.4.251.PubMedCentralCrossRefPubMed Phillips MM, Sheaff MT, Szlosarek PW: Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013, 45 (4): 251-262. 10.4143/crt.2013.45.4.251.PubMedCentralCrossRefPubMed
30.
go back to reference Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG: Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med. 2010, 10 (4): 405-412. 10.2174/156652410791316995.PubMedCentralCrossRefPubMed Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG: Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med. 2010, 10 (4): 405-412. 10.2174/156652410791316995.PubMedCentralCrossRefPubMed
31.
go back to reference Kim RH, Bold RJ, Kung HJ: ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy. 2009, 5 (4): 567-568. 10.4161/auto.5.4.8252.PubMedCentralCrossRefPubMed Kim RH, Bold RJ, Kung HJ: ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy. 2009, 5 (4): 567-568. 10.4161/auto.5.4.8252.PubMedCentralCrossRefPubMed
32.
go back to reference Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW: Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010, 126 (12): 2762-2772.PubMed Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW: Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010, 126 (12): 2762-2772.PubMed
33.
go back to reference Tsai WB, Aiba I, Lee SY, Feun L, Savaraj N, Kuo MT: Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol Cancer Ther. 2009, 8 (12): 3223-3233. 10.1158/1535-7163.MCT-09-0794.PubMedCentralCrossRefPubMed Tsai WB, Aiba I, Lee SY, Feun L, Savaraj N, Kuo MT: Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol Cancer Ther. 2009, 8 (12): 3223-3233. 10.1158/1535-7163.MCT-09-0794.PubMedCentralCrossRefPubMed
34.
go back to reference Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, Park IS, Yoon DK, Min BH: Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 2007, 120 (4): 897-905. 10.1002/ijc.22322.CrossRefPubMed Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, Park IS, Yoon DK, Min BH: Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 2007, 120 (4): 897-905. 10.1002/ijc.22322.CrossRefPubMed
35.
go back to reference Gong H, Pöttgen C, Stüben G, Havers W, Stuschke M, Schweigerer L: Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int J Cancer. 2003, 106 (5): 723-728. 10.1002/ijc.11298.CrossRefPubMed Gong H, Pöttgen C, Stüben G, Havers W, Stuschke M, Schweigerer L: Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int J Cancer. 2003, 106 (5): 723-728. 10.1002/ijc.11298.CrossRefPubMed
Metadata
Title
Pegylated arginine deiminase synergistically increases the cytotoxicity of gemcitabine in human pancreatic cancer
Authors
Rouzbeh Daylami
Diego J Muilenburg
Subbulakshmi Virudachalam
Richard J Bold
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2014
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-014-0102-9

Other articles of this Issue 1/2014

Journal of Experimental & Clinical Cancer Research 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine