Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2014

Open Access 01-12-2014 | Review

Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention

Authors: Samantha Kaufhold, Benjamin Bonavida

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2014

Login to get access

Abstract

Snail1 is the founding member of the Snail superfamily of zinc-finger transcription factors, which also includes Snail2 (Slug) and Snail3 (Smuc). The superfamily is involved in cell differentiation and survival, two processes central in cancer research. Encoded by the SNAI1 gene located on human chromosome 20q13.2, Snail1 is composed of 264 amino acids and usually acts as a transcriptional repressor. Phosphorylation and nuclear localization of Snail1, governed by PI3K and Wnt signaling pathways crosstalk, are critical in Snail1’s regulation. Snail1 has a pivotal role in the regulation of epithelial-mesenchymal transition (EMT), the process by which epithelial cells acquire a migratory, mesenchymal phenotype, as a result of its repression of E-cadherin. Snail1-induced EMT involves the loss of E-cadherin and claudins with concomitant upregulation of vimentin and fibronectin, among other biomarkers. While essential to normal developmental processes such as gastrulation, EMT is associated with metastasis, the cancer stem cell phenotype, and the regulation of chemo and immune resistance in cancer. Snail1 expression is a common sign of poor prognosis in metastatic cancer, and tumors with elevated Snail1 expression are disproportionately difficult to eradicate by current therapeutic treatments. The significance of Snail1 as a prognostic indicator, its involvement in the regulation of EMT and metastasis, and its roles in both drug and immune resistance point out that Snail1 is an attractive target for tumor growth inhibition and a target for sensitization to cytotoxic drugs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nieto MA: The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002, 3: 155-166.PubMedCrossRef Nieto MA: The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002, 3: 155-166.PubMedCrossRef
2.
go back to reference Boulay J, Dennefeld C, Alberga A: The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature. 1987, 330: 395-398.PubMedCrossRef Boulay J, Dennefeld C, Alberga A: The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature. 1987, 330: 395-398.PubMedCrossRef
3.
go back to reference Manzanares M, Locascio A, Nieto MA: The increasing complexity of the snail gene superfamily in metazoan evolution. Trends Genet. 2001, 17: 178-181.PubMedCrossRef Manzanares M, Locascio A, Nieto MA: The increasing complexity of the snail gene superfamily in metazoan evolution. Trends Genet. 2001, 17: 178-181.PubMedCrossRef
4.
go back to reference Grau Y, Carteret C, Simpson P: Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics. 1984, 108: 347-360.PubMedCentralPubMed Grau Y, Carteret C, Simpson P: Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics. 1984, 108: 347-360.PubMedCentralPubMed
5.
go back to reference Nusslein-Volhard C, Weischaus E, Kluding H: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilheim Roux’s Arch Dev Biol. 1984, 193: 267-282.CrossRef Nusslein-Volhard C, Weischaus E, Kluding H: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilheim Roux’s Arch Dev Biol. 1984, 193: 267-282.CrossRef
6.
go back to reference Twigg S, Wilkie AOM: Characterization of the human snail (SNAI1) gene and exclusion as a major disease gene in craniosynostosis. Hum Genet. 1999, 105: 320-326.PubMed Twigg S, Wilkie AOM: Characterization of the human snail (SNAI1) gene and exclusion as a major disease gene in craniosynostosis. Hum Genet. 1999, 105: 320-326.PubMed
7.
go back to reference Paznekas W, Okajima K, Schertzer M, Wood S, Jabs E: Genomic organization, expression, and chromosome location of the human snail gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999, 62: 42-49.PubMedCrossRef Paznekas W, Okajima K, Schertzer M, Wood S, Jabs E: Genomic organization, expression, and chromosome location of the human snail gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999, 62: 42-49.PubMedCrossRef
8.
go back to reference Barrallo-Gimeno A, Nieto MA: Evolutionary history of the snail/scratch superfamily. Trends Genet. 2009, 25: 248-252.PubMedCrossRef Barrallo-Gimeno A, Nieto MA: Evolutionary history of the snail/scratch superfamily. Trends Genet. 2009, 25: 248-252.PubMedCrossRef
9.
go back to reference Human Snail1: sequence retrieved from and alignments run through NIH BLAST http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi.,http://www.uniprot.org/uniprot/O95863 Human Snail1: sequence retrieved from and alignments run through NIH BLAST http://​blast.​st-va.​ncbi.​nlm.​nih.​gov/​Blast.​cgi.​,http://www.uniprot.org/uniprot/O95863
11.
go back to reference Carver EA, Jiang R, Gridley T: The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001, 21: 8184-8188.PubMedCentralPubMedCrossRef Carver EA, Jiang R, Gridley T: The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001, 21: 8184-8188.PubMedCentralPubMedCrossRef
12.
go back to reference Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132: 3151-3161.PubMedCrossRef Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132: 3151-3161.PubMedCrossRef
13.
go back to reference Kajita M, McClinic K, Wade P: Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol Cell Biol. 2004, 24: 7559-7566.PubMedCentralPubMedCrossRef Kajita M, McClinic K, Wade P: Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol Cell Biol. 2004, 24: 7559-7566.PubMedCentralPubMedCrossRef
14.
go back to reference Mani S, Guo W, Liao MJ, Eaton E, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133: 704-715.PubMedCentralPubMedCrossRef Mani S, Guo W, Liao MJ, Eaton E, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133: 704-715.PubMedCentralPubMedCrossRef
15.
go back to reference Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W, Mou Y, Wang L: Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One. 2014, 9: e87409-PubMedCentralPubMedCrossRef Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W, Mou Y, Wang L: Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One. 2014, 9: e87409-PubMedCentralPubMedCrossRef
16.
go back to reference Wang H, Zhang G, Zhang H, Zhang F, Zhou BP, Ning F, Wang HS, Cai SH, Du J: Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway. Eur J Pharmacol. 2014, 723: 156-166.PubMedCrossRef Wang H, Zhang G, Zhang H, Zhang F, Zhou BP, Ning F, Wang HS, Cai SH, Du J: Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway. Eur J Pharmacol. 2014, 723: 156-166.PubMedCrossRef
18.
go back to reference Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F: A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 2005, 24: 3446-3458.PubMedCentralPubMedCrossRef Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F: A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 2005, 24: 3446-3458.PubMedCentralPubMedCrossRef
19.
go back to reference Zhu GH, Huang C, Feng ZZ, Lv XH, Qiu ZJ: Hypoxia-induced snail expression through transcriptional regulation by HIF-1alpha in pancreatic cancer cells. Dig Dis Sci. 2013, 58: 3503-3515.PubMedCrossRef Zhu GH, Huang C, Feng ZZ, Lv XH, Qiu ZJ: Hypoxia-induced snail expression through transcriptional regulation by HIF-1alpha in pancreatic cancer cells. Dig Dis Sci. 2013, 58: 3503-3515.PubMedCrossRef
20.
go back to reference Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S, Baulida J, Franci C, Dedhar S, Larue L, Garcia de Herreros A: Regulation of snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene. 2004, 23: 7345-7354.PubMedCrossRef Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S, Baulida J, Franci C, Dedhar S, Larue L, Garcia de Herreros A: Regulation of snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene. 2004, 23: 7345-7354.PubMedCrossRef
21.
go back to reference Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G: IKKalpha controls canonical TGFBeta-SMAD signaling to regulate genes expressing snail and slug during EMT in Panc1 cells. J Cell Sci. 2010, 123: 4231-4239.PubMedCrossRef Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G: IKKalpha controls canonical TGFBeta-SMAD signaling to regulate genes expressing snail and slug during EMT in Panc1 cells. J Cell Sci. 2010, 123: 4231-4239.PubMedCrossRef
22.
go back to reference Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008, 283: 33437-33446.PubMedCentralPubMedCrossRef Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008, 283: 33437-33446.PubMedCentralPubMedCrossRef
23.
go back to reference McPhee T, McDonald P, Oloumi A, Dedhar S: Integrin-linked kinase regulates E-Cadherin expression through PARP-1. Dev Dyn. 2008, 237: 2737-2747.PubMedCrossRef McPhee T, McDonald P, Oloumi A, Dedhar S: Integrin-linked kinase regulates E-Cadherin expression through PARP-1. Dev Dyn. 2008, 237: 2737-2747.PubMedCrossRef
24.
go back to reference Yadav A, Kumar B, Datta J, Teknos T, Kumar P: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 2011, 9: 1658-1667.PubMedCentralPubMedCrossRef Yadav A, Kumar B, Datta J, Teknos T, Kumar P: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 2011, 9: 1658-1667.PubMedCentralPubMedCrossRef
25.
go back to reference Zhang XH, Liang X, Wang TS, Liang XH, Zuo RJ, Deng WB, Zhang ZR, Qin FN, Zhao ZA, Yang ZM: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) induction on Snail expression during mouse decidualization. Mol Cell Endocrinol. 2013, 381: 272-279.PubMedCrossRef Zhang XH, Liang X, Wang TS, Liang XH, Zuo RJ, Deng WB, Zhang ZR, Qin FN, Zhao ZA, Yang ZM: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) induction on Snail expression during mouse decidualization. Mol Cell Endocrinol. 2013, 381: 272-279.PubMedCrossRef
26.
go back to reference Li X, Deng W, Lobo-Ruppert S, Ruppert J: Gli1 acts through Snail and E-Cadherin to promote nuclear signaling by Beta-catenin. Oncogene. 2007, 26: 4489-4498.PubMedCentralPubMedCrossRef Li X, Deng W, Lobo-Ruppert S, Ruppert J: Gli1 acts through Snail and E-Cadherin to promote nuclear signaling by Beta-catenin. Oncogene. 2007, 26: 4489-4498.PubMedCentralPubMedCrossRef
27.
go back to reference Fujita N, Jaye D, Kajita M, Geigerman C, Moreno C, Wade P: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219.PubMedCrossRef Fujita N, Jaye D, Kajita M, Geigerman C, Moreno C, Wade P: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219.PubMedCrossRef
28.
go back to reference Dhasarathy A, Kajita M, Wade P: The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007, 21: 2907-2918.PubMedCentralPubMedCrossRef Dhasarathy A, Kajita M, Wade P: The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007, 21: 2907-2918.PubMedCentralPubMedCrossRef
29.
go back to reference Grotegut S, von Schweinitz D, Christofori G, Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006, 25: 3534-3545.PubMedCentralPubMedCrossRef Grotegut S, von Schweinitz D, Christofori G, Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006, 25: 3534-3545.PubMedCentralPubMedCrossRef
30.
go back to reference Palmer M, Majumder P, Cooper J, Yoon H, Wade P, Boss J: Yin Yang 1 regulates the expression of Snail through a distal enhancer. Mol Cancer Res. 2009, 7: 221-229.PubMedCentralPubMedCrossRef Palmer M, Majumder P, Cooper J, Yoon H, Wade P, Boss J: Yin Yang 1 regulates the expression of Snail through a distal enhancer. Mol Cancer Res. 2009, 7: 221-229.PubMedCentralPubMedCrossRef
31.
go back to reference Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Franci C, Munoz A, Virtanen I, Baulida J, Garcia de herreros A: Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 2006, 34: 2077-2084.PubMedCentralPubMedCrossRef Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Franci C, Munoz A, Virtanen I, Baulida J, Garcia de herreros A: Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 2006, 34: 2077-2084.PubMedCentralPubMedCrossRef
32.
go back to reference Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesencymal transition. J Cell Biol. 2011, 195: 417-433.PubMedCentralPubMedCrossRef Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesencymal transition. J Cell Biol. 2011, 195: 417-433.PubMedCentralPubMedCrossRef
33.
go back to reference Zhou BP, Deng J, Xia W, Xu J, Li Y, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6: 931-940.PubMedCrossRef Zhou BP, Deng J, Xia W, Xu J, Li Y, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6: 931-940.PubMedCrossRef
34.
go back to reference Katoh M, Katoh M: Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther. 2006, 5: 1059-1064.PubMedCrossRef Katoh M, Katoh M: Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther. 2006, 5: 1059-1064.PubMedCrossRef
35.
go back to reference Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, Baulida J, Bonilla F, Garcia de herreros A, Diaz VM: The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010, 285: 3794-3805.PubMedCentralPubMedCrossRef Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, Baulida J, Bonilla F, Garcia de herreros A, Diaz VM: The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010, 285: 3794-3805.PubMedCentralPubMedCrossRef
36.
go back to reference Yang Z, Rayala S, Nguyen D, Vadlmudi R, Chen S, Kumar R: Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchhyme transition, modulates snail’s subcellular localization and functions. Cancer Res. 2005, 65: 3179-3184.PubMed Yang Z, Rayala S, Nguyen D, Vadlmudi R, Chen S, Kumar R: Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchhyme transition, modulates snail’s subcellular localization and functions. Cancer Res. 2005, 65: 3179-3184.PubMed
37.
go back to reference Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Franci C, Garcia de Herreros A: Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol. 2003, 23: 5078-5089.PubMedCentralPubMedCrossRef Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Franci C, Garcia de Herreros A: Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol. 2003, 23: 5078-5089.PubMedCentralPubMedCrossRef
38.
go back to reference Ko H, Kim H, Kim N, Lee S, Kim K, Hong S, Yook J: Nuclear localization signals of the E-Cadherin transcriptional repressor Snail. Cells Tissues Organs. 2007, 185: 66-72.PubMedCrossRef Ko H, Kim H, Kim N, Lee S, Kim K, Hong S, Yook J: Nuclear localization signals of the E-Cadherin transcriptional repressor Snail. Cells Tissues Organs. 2007, 185: 66-72.PubMedCrossRef
39.
go back to reference Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP: Stabilization of snail by NFkappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009, 15: 416-428.PubMedCentralPubMedCrossRef Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP: Stabilization of snail by NFkappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009, 15: 416-428.PubMedCentralPubMedCrossRef
40.
41.
go back to reference Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ: Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005, 280: 11740-11748.PubMedCrossRef Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ: Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005, 280: 11740-11748.PubMedCrossRef
42.
go back to reference Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM: MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling.Oncogene 2013, Epub ahead of print., Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM: MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling.Oncogene 2013, Epub ahead of print.,
43.
go back to reference Tsubaki M, Komai M, Fujimoto SI, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S: Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines. J Exp Clin Cancer Res. 2013, 32: 62-PubMedCentralPubMedCrossRef Tsubaki M, Komai M, Fujimoto SI, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S: Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines. J Exp Clin Cancer Res. 2013, 32: 62-PubMedCentralPubMedCrossRef
44.
go back to reference Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, Dargemont C, de Herreros AG, Bellacosa A, Larue L: Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007, 26: 7445-7456.PubMedCrossRef Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, Dargemont C, de Herreros AG, Bellacosa A, Larue L: Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007, 26: 7445-7456.PubMedCrossRef
45.
go back to reference Cheng JC, Chang HM, Leung P: TGF-Beta1 inhibits trophoblast cell invasion by inducing snail-mediated down-regulation of ve-cadherin. J Biol Chem. 2013, 288: 33181-33192.PubMedCentralPubMedCrossRef Cheng JC, Chang HM, Leung P: TGF-Beta1 inhibits trophoblast cell invasion by inducing snail-mediated down-regulation of ve-cadherin. J Biol Chem. 2013, 288: 33181-33192.PubMedCentralPubMedCrossRef
46.
go back to reference Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M: Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem. 2009, 284: 245-253.PubMedCrossRef Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M: Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem. 2009, 284: 245-253.PubMedCrossRef
47.
48.
go back to reference Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J: Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta. 1833, 2013: 663-671. Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J: Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta. 1833, 2013: 663-671.
49.
go back to reference Takeichi M: Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977, 75: 464-474.PubMedCrossRef Takeichi M: Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977, 75: 464-474.PubMedCrossRef
50.
go back to reference Berx G, Staes K, van Hengel J, Molemans F, Bussemakers M, von Bokhoven A, van Roy F: Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995, 26: 281-289.PubMedCrossRef Berx G, Staes K, van Hengel J, Molemans F, Bussemakers M, von Bokhoven A, van Roy F: Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995, 26: 281-289.PubMedCrossRef
51.
go back to reference Van Roy F, Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008, 65: 3756-3788.PubMedCrossRef Van Roy F, Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008, 65: 3756-3788.PubMedCrossRef
52.
go back to reference Takeichi M, Matsunami H, Inoue T, Kimura Y, Suzuki S, Tanaka T: Roles of cadherins in patterning of the developing brain. Dev Neurosci. 1997, 19: 86-87.PubMedCrossRef Takeichi M, Matsunami H, Inoue T, Kimura Y, Suzuki S, Tanaka T: Roles of cadherins in patterning of the developing brain. Dev Neurosci. 1997, 19: 86-87.PubMedCrossRef
53.
54.
go back to reference Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83.PubMedCrossRef Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83.PubMedCrossRef
55.
go back to reference Larue L, Ohsugi M, Hirchenhain J, Kemler R: E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A. 1994, 91: 8263-8267.PubMedCentralPubMedCrossRef Larue L, Ohsugi M, Hirchenhain J, Kemler R: E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A. 1994, 91: 8263-8267.PubMedCentralPubMedCrossRef
56.
go back to reference Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou P, Evers B, Zhou B: G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Investig. 2012, 122: 1469-1486.PubMedCentralPubMedCrossRef Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou P, Evers B, Zhou B: G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Investig. 2012, 122: 1469-1486.PubMedCentralPubMedCrossRef
57.
go back to reference Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD, Rauscher FJ: The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol. 2008, 28: 3198-3207.PubMedCentralPubMedCrossRef Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD, Rauscher FJ: The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol. 2008, 28: 3198-3207.PubMedCentralPubMedCrossRef
58.
go back to reference Shi Y, Whetstine JR: Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007, 25: 1-14.PubMedCrossRef Shi Y, Whetstine JR: Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007, 25: 1-14.PubMedCrossRef
59.
go back to reference Peinado H, Ballestar E, Esteller M, Cano A: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004, 24: 306-319.PubMedCentralPubMedCrossRef Peinado H, Ballestar E, Esteller M, Cano A: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004, 24: 306-319.PubMedCentralPubMedCrossRef
60.
go back to reference Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP: The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 2010, 29: 1803-1816.PubMedCentralPubMedCrossRef Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP: The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 2010, 29: 1803-1816.PubMedCentralPubMedCrossRef
61.
go back to reference Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP: Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene. 2013, 32: 1351-1362.PubMedCentralPubMedCrossRef Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP: Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene. 2013, 32: 1351-1362.PubMedCentralPubMedCrossRef
62.
go back to reference Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature. 1999, 401: 173-177.PubMedCrossRef Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature. 1999, 401: 173-177.PubMedCrossRef
63.
go back to reference Yeung K, Rose DW, Dhillon AS, Yaros D, Gusafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM: Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol. 2001, 21: 7201-7217.CrossRef Yeung K, Rose DW, Dhillon AS, Yaros D, Gusafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM: Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol. 2001, 21: 7201-7217.CrossRef
64.
go back to reference Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004, 279: 17515-17523.PubMedCrossRef Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004, 279: 17515-17523.PubMedCrossRef
65.
go back to reference Park S, Yeung ML, Beach S, Shields JM, Yeung KC: RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene. 2005, 24: 3535-3540.PubMedCrossRef Park S, Yeung ML, Beach S, Shields JM, Yeung KC: RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene. 2005, 24: 3535-3540.PubMedCrossRef
66.
go back to reference Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, Garcia JJ, Scott L, Fyfe N, Murray GI, Kolch W: Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol. 2006, 24: 5672-5679.PubMedCrossRef Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, Garcia JJ, Scott L, Fyfe N, Murray GI, Kolch W: Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol. 2006, 24: 5672-5679.PubMedCrossRef
67.
go back to reference Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, Keller PJ, Mizokami A, Dunn R, Chinnaiyan AM, Yao Z, Keller ET: Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate. 2005, 66: 248-256.CrossRef Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, Keller PJ, Mizokami A, Dunn R, Chinnaiyan AM, Yao Z, Keller ET: Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate. 2005, 66: 248-256.CrossRef
68.
go back to reference Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC: Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008, 27: 2243-2248.PubMedCentralPubMedCrossRef Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC: Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008, 27: 2243-2248.PubMedCentralPubMedCrossRef
69.
go back to reference Vazquez F, Devreotes P: Regulation of PTEN Function as a PIP3 Gatekeeper through Membrane. Cell Cycle. 2006, 5: 1523-1527.PubMedCrossRef Vazquez F, Devreotes P: Regulation of PTEN Function as a PIP3 Gatekeeper through Membrane. Cell Cycle. 2006, 5: 1523-1527.PubMedCrossRef
70.
go back to reference Escriva M, Peiro S, Herranz H, Villagrasa P, Dave N, Montserrat-Sentis B, Murray SA, Franci C, Gridley T, Virtanen I, Garcia de herreros A: Repression of PTEN Phosphatase by Snail1 Transcriptional Factor during Gamma Radiation-Induced Apoptosis. Mol Cell Biol. 2008, 28: 1528-1540.PubMedCentralPubMedCrossRef Escriva M, Peiro S, Herranz H, Villagrasa P, Dave N, Montserrat-Sentis B, Murray SA, Franci C, Gridley T, Virtanen I, Garcia de herreros A: Repression of PTEN Phosphatase by Snail1 Transcriptional Factor during Gamma Radiation-Induced Apoptosis. Mol Cell Biol. 2008, 28: 1528-1540.PubMedCentralPubMedCrossRef
71.
go back to reference Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW: Regulation of PTEN transcription by p53. Mol Cell. 2001, 8: 317-325.PubMedCrossRef Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW: Regulation of PTEN transcription by p53. Mol Cell. 2001, 8: 317-325.PubMedCrossRef
72.
go back to reference Yamada KM, Araki M: Tumor suppressor PTEN: modulator of cell signalling, growth, migration and apoptosis. J Cell Sci. 2002, 114: 2375-2382. Yamada KM, Araki M: Tumor suppressor PTEN: modulator of cell signalling, growth, migration and apoptosis. J Cell Sci. 2002, 114: 2375-2382.
73.
go back to reference Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S: Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993, 123: 1777-1788.PubMedCrossRef Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S: Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993, 123: 1777-1788.PubMedCrossRef
74.
go back to reference Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S: Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol. 1996, 133: 43-47.PubMedCrossRef Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S: Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol. 1996, 133: 43-47.PubMedCrossRef
75.
go back to reference Ikenouchi J, Matsuda M, Furuse M, Tsukita S: Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003, 116: 1959-1967.PubMedCrossRef Ikenouchi J, Matsuda M, Furuse M, Tsukita S: Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003, 116: 1959-1967.PubMedCrossRef
77.
go back to reference Martinez-Estrada O, Culleres A, Vilaro S: The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J. 2006, 394: 449-457.PubMedCentralPubMedCrossRef Martinez-Estrada O, Culleres A, Vilaro S: The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J. 2006, 394: 449-457.PubMedCentralPubMedCrossRef
78.
go back to reference Martin T, Jiang W: Loss of tight junction barrier function and its role in cancer metastasis. BBA Biomembranes. 2009, 1788: 872-891.PubMedCrossRef Martin T, Jiang W: Loss of tight junction barrier function and its role in cancer metastasis. BBA Biomembranes. 2009, 1788: 872-891.PubMedCrossRef
79.
go back to reference Zaretsky J, Barnea I, Aylon Y, Gorivodsky M, Wreschner D, Keydar I: MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Mol Cancer. 2006, 5: 57-PubMedCentralPubMedCrossRef Zaretsky J, Barnea I, Aylon Y, Gorivodsky M, Wreschner D, Keydar I: MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Mol Cancer. 2006, 5: 57-PubMedCentralPubMedCrossRef
80.
81.
go back to reference Hollingsworth M, Swanson B: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4: 45-60.PubMedCrossRef Hollingsworth M, Swanson B: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4: 45-60.PubMedCrossRef
83.
go back to reference Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277: 39209-39216.PubMedCrossRef Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277: 39209-39216.PubMedCrossRef
84.
go back to reference Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A: ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010, 29: 3490-3500.PubMedCrossRef Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A: ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010, 29: 3490-3500.PubMedCrossRef
86.
go back to reference Lilienbaum A, Paulin D: Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem. 1993, 268: 2180-2188.PubMed Lilienbaum A, Paulin D: Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem. 1993, 268: 2180-2188.PubMed
87.
go back to reference Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE: TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim Biophys Acta. 2007, 1773: 427-439.PubMedCentralPubMedCrossRef Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE: TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim Biophys Acta. 2007, 1773: 427-439.PubMedCentralPubMedCrossRef
88.
go back to reference Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, Luo X, Lazar A, Dicker A, Mills GB, Hung MC, Lev D: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene. 2011, 30: 457-470.PubMedCentralPubMedCrossRef Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, Luo X, Lazar A, Dicker A, Mills GB, Hung MC, Lev D: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene. 2011, 30: 457-470.PubMedCentralPubMedCrossRef
89.
go back to reference Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM: Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003, 63: 2658-2664.PubMed Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM: Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003, 63: 2658-2664.PubMed
90.
go back to reference Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AA, Villette JM, Stower MJ, Maitland NJ: Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate. 2002, 52: 253-263.PubMedCrossRef Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AA, Villette JM, Stower MJ, Maitland NJ: Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate. 2002, 52: 253-263.PubMedCrossRef
91.
go back to reference Zhao Y, Yan Q, Long X, Chen X, Wang Y: Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct. 2008, 26: 571-577.PubMedCrossRef Zhao Y, Yan Q, Long X, Chen X, Wang Y: Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct. 2008, 26: 571-577.PubMedCrossRef
92.
go back to reference Hynes RO, Yamada KM: Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982, 95: 369-377.PubMedCrossRef Hynes RO, Yamada KM: Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982, 95: 369-377.PubMedCrossRef
93.
go back to reference Mosher DF: Fibronectin. 1989, Academic Press, Inc., San Diego Mosher DF: Fibronectin. 1989, Academic Press, Inc., San Diego
95.
go back to reference Benecky MJ, Kolvenback CG, Amrani DL, Mosesson MN: Evidence that binding to the carboxyl-terminal heparin-binding domain (HepII) dominates the interaction between plasma fibronectin and heparin. Biochem. 1988, 27: 7565-7571.CrossRef Benecky MJ, Kolvenback CG, Amrani DL, Mosesson MN: Evidence that binding to the carboxyl-terminal heparin-binding domain (HepII) dominates the interaction between plasma fibronectin and heparin. Biochem. 1988, 27: 7565-7571.CrossRef
97.
go back to reference Mostafavi-Pour Z, Askari JA, Whittard JD, Humphries MJ: Identification of a novel heparin-binding site in the alternatively spliced IIICS region of fibronectin: roles of integrins and proteoglycans in cell adhesion to fibronectin splice variants. Matrix Biol. 2001, 20: 63-73.PubMedCrossRef Mostafavi-Pour Z, Askari JA, Whittard JD, Humphries MJ: Identification of a novel heparin-binding site in the alternatively spliced IIICS region of fibronectin: roles of integrins and proteoglycans in cell adhesion to fibronectin splice variants. Matrix Biol. 2001, 20: 63-73.PubMedCrossRef
98.
go back to reference Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L: The EIIIA segment of fibronectin is a ligand for integrins α9β1 andα 4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem. 2002, 277: 14467-14474.PubMedCrossRef Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L: The EIIIA segment of fibronectin is a ligand for integrins α9β1 andα 4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem. 2002, 277: 14467-14474.PubMedCrossRef
99.
go back to reference Erat MC, Sladek B, Campbell ID, Vakonakis I: Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem. 2013, 288: 17441-17450.PubMedCentralPubMedCrossRef Erat MC, Sladek B, Campbell ID, Vakonakis I: Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem. 2013, 288: 17441-17450.PubMedCentralPubMedCrossRef
100.
go back to reference George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO: Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993, 119: 1079-1091.PubMed George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO: Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993, 119: 1079-1091.PubMed
101.
go back to reference Moll R, Franke WW, Schiller DL, Geiger B, Krepler R: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982, 31: 11-24.PubMedCrossRef Moll R, Franke WW, Schiller DL, Geiger B, Krepler R: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982, 31: 11-24.PubMedCrossRef
102.
go back to reference Fuchs E, Cleveland DW: A structural scaffolding of intermediate filaments in health and disease. Science. 1998, 279: 514-519.PubMedCrossRef Fuchs E, Cleveland DW: A structural scaffolding of intermediate filaments in health and disease. Science. 1998, 279: 514-519.PubMedCrossRef
103.
go back to reference Coulombe PA, Omary MB: ‘Hard‘ and ‘soft‘ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002, 14: 110-122.PubMedCrossRef Coulombe PA, Omary MB: ‘Hard‘ and ‘soft‘ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002, 14: 110-122.PubMedCrossRef
104.
go back to reference Galarneau L, Loranger A, Gilbert S, Marceau N: Keratins modulate hepatic cell adhesion, size and G1/S transition. Exp Cell Res. 2007, 313: 179-194.PubMedCrossRef Galarneau L, Loranger A, Gilbert S, Marceau N: Keratins modulate hepatic cell adhesion, size and G1/S transition. Exp Cell Res. 2007, 313: 179-194.PubMedCrossRef
105.
go back to reference Oshima RG, Baribault H, Caulín C: Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev. 1996, 15: 445-471.PubMedCrossRef Oshima RG, Baribault H, Caulín C: Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev. 1996, 15: 445-471.PubMedCrossRef
106.
go back to reference Lin MH, Liu SY, Su HJ, Liu YC: Functional role of matrix metalloproteinase 28 in the oral squamous cell carcinoma. Oral Oncol. 2006, 42: 907-913.PubMedCrossRef Lin MH, Liu SY, Su HJ, Liu YC: Functional role of matrix metalloproteinase 28 in the oral squamous cell carcinoma. Oral Oncol. 2006, 42: 907-913.PubMedCrossRef
107.
go back to reference Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix Metalloproteinases: a review. Crit Rev Oral Biol Med. 1993, 4: 197-250.PubMed Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix Metalloproteinases: a review. Crit Rev Oral Biol Med. 1993, 4: 197-250.PubMed
108.
go back to reference Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG: Human 92- and 72- kilodalton type IV collagenases are elastases. J Biol Chem. 1991, 266: 7870-7875.PubMed Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG: Human 92- and 72- kilodalton type IV collagenases are elastases. J Biol Chem. 1991, 266: 7870-7875.PubMed
109.
go back to reference Seltzer JL, Adams SA, Grant GA, Eisen AZ: Purification and properties of a gelatin-specific neutral protease from human skin. J Biol Chem. 1981, 256: 4662-4668.PubMed Seltzer JL, Adams SA, Grant GA, Eisen AZ: Purification and properties of a gelatin-specific neutral protease from human skin. J Biol Chem. 1981, 256: 4662-4668.PubMed
110.
go back to reference Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE: Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (Gelatinase) derived from human skin. J Biol Chem. 1989, 264: 3822-3826.PubMed Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE: Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (Gelatinase) derived from human skin. J Biol Chem. 1989, 264: 3822-3826.PubMed
111.
go back to reference Gadher SJ, Schmid TM, Heck LW, Woolley DE: Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. Matrix. 1989, 9: 109-115.PubMedCrossRef Gadher SJ, Schmid TM, Heck LW, Woolley DE: Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. Matrix. 1989, 9: 109-115.PubMedCrossRef
112.
go back to reference Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K: Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem. 1991, 266: 16485-16490.PubMed Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K: Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem. 1991, 266: 16485-16490.PubMed
113.
go back to reference Qiao B, Johnson N, Gao J: Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol. 2010, 37: 663-668.PubMed Qiao B, Johnson N, Gao J: Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol. 2010, 37: 663-668.PubMed
114.
go back to reference Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymic degradation of basement membrane collagen. Nature. 1980, 284: 67-68.PubMedCrossRef Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymic degradation of basement membrane collagen. Nature. 1980, 284: 67-68.PubMedCrossRef
115.
go back to reference Garbisa S, Pozzati R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with C-Ha-ras but not C-Ha-ras plus Ad2-Ela. Cancer Res. 1987, 47: 1523-1528.PubMed Garbisa S, Pozzati R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with C-Ha-ras but not C-Ha-ras plus Ad2-Ela. Cancer Res. 1987, 47: 1523-1528.PubMed
116.
go back to reference Nakajima M, Welch DR, Belloni PN, Nicholson GL: Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res. 1987, 47: 4869-4876.PubMed Nakajima M, Welch DR, Belloni PN, Nicholson GL: Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res. 1987, 47: 4869-4876.PubMed
117.
go back to reference Bernhard EJ, Muschel RJ, Hughes EN: Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res. 1990, 50: 3872-3877.PubMed Bernhard EJ, Muschel RJ, Hughes EN: Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res. 1990, 50: 3872-3877.PubMed
118.
go back to reference Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S: Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol. 2013, 0: 1-15. Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S: Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol. 2013, 0: 1-15.
119.
go back to reference Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P: Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin. Oncogene. 1997, 15: 2833-2839.PubMedCrossRef Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P: Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin. Oncogene. 1997, 15: 2833-2839.PubMedCrossRef
120.
go back to reference Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792.PubMedCrossRef Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792.PubMedCrossRef
121.
go back to reference Jamora C, DasGupta R, Kocieniewski P, Fuchs E: Links between signal transduction, transcription and adhesion in epithelial bud development. Nature. 2003, 422: 317-322.PubMedCentralPubMedCrossRef Jamora C, DasGupta R, Kocieniewski P, Fuchs E: Links between signal transduction, transcription and adhesion in epithelial bud development. Nature. 2003, 422: 317-322.PubMedCentralPubMedCrossRef
122.
go back to reference Kim K, Lu Z, Hay ED: Direct evidence for a role of betacatenin/LEF-1 signalling pathway in the induction of EMT. Cell Biol Int. 2002, 26: 463-476.PubMedCrossRef Kim K, Lu Z, Hay ED: Direct evidence for a role of betacatenin/LEF-1 signalling pathway in the induction of EMT. Cell Biol Int. 2002, 26: 463-476.PubMedCrossRef
123.
go back to reference Waterman ML: Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer Metastasis Rev. 2004, 23: 41-52.PubMedCrossRef Waterman ML: Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer Metastasis Rev. 2004, 23: 41-52.PubMedCrossRef
124.
go back to reference Medici D, Hay E, Goodenough D: Cooperation between Snail and LEF-1 transcription factors is essential for TGF-β1-induced epithelial-mesenchymal transition. Mol Biol Cell. 2006, 17: 1871-1879.PubMedCentralPubMedCrossRef Medici D, Hay E, Goodenough D: Cooperation between Snail and LEF-1 transcription factors is essential for TGF-β1-induced epithelial-mesenchymal transition. Mol Biol Cell. 2006, 17: 1871-1879.PubMedCentralPubMedCrossRef
125.
go back to reference De Craene B, van Roy F, Berx G: Unraveling signaling cascades for the Snail family of transcription factors. Cell Signal. 2005, 17: 535-547.PubMedCrossRef De Craene B, van Roy F, Berx G: Unraveling signaling cascades for the Snail family of transcription factors. Cell Signal. 2005, 17: 535-547.PubMedCrossRef
126.
go back to reference Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience with long-term follow-up. Histopathology. 1991, 19: 403-410.PubMedCrossRef Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience with long-term follow-up. Histopathology. 1991, 19: 403-410.PubMedCrossRef
127.
go back to reference Dieterich M, Goodman SN, Rojas-Corona RR, Emralino AB, Jimenez-Joseph D, Sherman ME: Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol. 1994, 38: 945-952.PubMed Dieterich M, Goodman SN, Rojas-Corona RR, Emralino AB, Jimenez-Joseph D, Sherman ME: Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol. 1994, 38: 945-952.PubMed
128.
go back to reference Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA: Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002, 21: 3241-3246.PubMedCrossRef Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA: Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002, 21: 3241-3246.PubMedCrossRef
129.
go back to reference Elloul S, Bukholt Elstrand M, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B: Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005, 103: 1631-1643.PubMedCrossRef Elloul S, Bukholt Elstrand M, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B: Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005, 103: 1631-1643.PubMedCrossRef
130.
go back to reference Jiao W, Miyazaki K, Kitajima Y: Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer. 2002, 86: 98-101.PubMedCentralPubMedCrossRef Jiao W, Miyazaki K, Kitajima Y: Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer. 2002, 86: 98-101.PubMedCentralPubMedCrossRef
131.
go back to reference Miyoshi A, Kitajima Y, Miyazaki K: Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005, 92: 252-258.PubMedCentralPubMed Miyoshi A, Kitajima Y, Miyazaki K: Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005, 92: 252-258.PubMedCentralPubMed
132.
go back to reference Woo HY, Min AL, Choi JY, Bae SH, Yoon SK, Jung CK: Clinicopathologic significance of the expression of Snail in hepatocellular carcinoma. Korean J Hepatol. 2011, 17: 12-18.PubMedCentralPubMedCrossRef Woo HY, Min AL, Choi JY, Bae SH, Yoon SK, Jung CK: Clinicopathologic significance of the expression of Snail in hepatocellular carcinoma. Korean J Hepatol. 2011, 17: 12-18.PubMedCentralPubMedCrossRef
133.
go back to reference Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R: Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch. 2006, 449: 520-528.PubMedCrossRef Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R: Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch. 2006, 449: 520-528.PubMedCrossRef
134.
go back to reference Rosiavitz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol. 2002, 161: 1881-1891.CrossRef Rosiavitz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol. 2002, 161: 1881-1891.CrossRef
135.
go back to reference Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park do Y: Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer. 2012, 12: 521-PubMedCentralPubMedCrossRef Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park do Y: Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer. 2012, 12: 521-PubMedCentralPubMedCrossRef
136.
go back to reference Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M: Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001, 37: 65-71.PubMedCrossRef Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M: Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001, 37: 65-71.PubMedCrossRef
137.
go back to reference Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007, 13: 4769-4776.PubMedCrossRef Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007, 13: 4769-4776.PubMedCrossRef
138.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59: 225-249.PubMedCrossRef Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59: 225-249.PubMedCrossRef
139.
go back to reference Roy H, Smyrk T, Koetsier J, Victor T, Wali R: The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci. 2005, 50: 42-46.PubMedCrossRef Roy H, Smyrk T, Koetsier J, Victor T, Wali R: The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci. 2005, 50: 42-46.PubMedCrossRef
140.
go back to reference Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA, Ellis LM: Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012, 1: 5-16.PubMedCentralPubMedCrossRef Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA, Ellis LM: Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012, 1: 5-16.PubMedCentralPubMedCrossRef
141.
go back to reference Yu Q, Zhang K, Wang X, Liu X, Zhang Z: Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res. 2010, 29: 119-PubMedCentralPubMedCrossRef Yu Q, Zhang K, Wang X, Liu X, Zhang Z: Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res. 2010, 29: 119-PubMedCentralPubMedCrossRef
142.
go back to reference Bruyere F, Namdarian B, Corcoran NM, Pedersen J, Ockrim J, Voelzke BB, Mete U, Costello AJ, Hovens CM: Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. Urol Oncol. 2010, 28: 591-596.PubMedCrossRef Bruyere F, Namdarian B, Corcoran NM, Pedersen J, Ockrim J, Voelzke BB, Mete U, Costello AJ, Hovens CM: Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. Urol Oncol. 2010, 28: 591-596.PubMedCrossRef
143.
go back to reference Poser I, Dominguez D, Garcia de Herreros A, Varnai A, Buettner R, Bosserhoff AK: Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem. 2001, 276: 24661-24666.PubMedCrossRef Poser I, Dominguez D, Garcia de Herreros A, Varnai A, Buettner R, Bosserhoff AK: Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem. 2001, 276: 24661-24666.PubMedCrossRef
144.
go back to reference Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009, 15: 195-206.PubMedCrossRef Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009, 15: 195-206.PubMedCrossRef
145.
go back to reference Saito T, Oda Y, Tsuneyoshi M: E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features. Am J Pathol. 2001, 159: 2117-2124.PubMedCentralPubMedCrossRef Saito T, Oda Y, Tsuneyoshi M: E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features. Am J Pathol. 2001, 159: 2117-2124.PubMedCentralPubMedCrossRef
146.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90.PubMedCrossRef
147.
go back to reference Delahunt B, Miller RJ, Srigley JR, Evans AJ, Samaratunga H: Gleason grading: past, present and future. Histopathology. 2012, 60: 75-86.PubMedCrossRef Delahunt B, Miller RJ, Srigley JR, Evans AJ, Samaratunga H: Gleason grading: past, present and future. Histopathology. 2012, 60: 75-86.PubMedCrossRef
149.
go back to reference Edwards IJ: Proteoglycans in prostate cancer. Nat Rev Urol. 2012, 21: 196-206.CrossRef Edwards IJ: Proteoglycans in prostate cancer. Nat Rev Urol. 2012, 21: 196-206.CrossRef
151.
go back to reference Nackaerts K, Verbeken E, Deneffe G, Vanderschueren B, Demedts M, David G: Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer. 1997, 74: 335-345.PubMedCrossRef Nackaerts K, Verbeken E, Deneffe G, Vanderschueren B, Demedts M, David G: Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer. 1997, 74: 335-345.PubMedCrossRef
152.
go back to reference Poblete C, Fulla J, Gallardo M, Munoz V, Castellon EA, Gallegos I, Contreras HR: Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol. 2014, 44: 647-654.PubMedCentralPubMed Poblete C, Fulla J, Gallardo M, Munoz V, Castellon EA, Gallegos I, Contreras HR: Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol. 2014, 44: 647-654.PubMedCentralPubMed
153.
go back to reference Chen Z, Li S, Huang K, Zhang Q, Wang J, Li X, Hu T, Wang S, Yang R, Jia Y, Sun H, Tang F, Zhou H, Shen J, Ma D, Wang S: The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial-mesenchymal transition pathway. Hum Pathol. 2013, 44: 2097-2105.PubMedCrossRef Chen Z, Li S, Huang K, Zhang Q, Wang J, Li X, Hu T, Wang S, Yang R, Jia Y, Sun H, Tang F, Zhou H, Shen J, Ma D, Wang S: The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial-mesenchymal transition pathway. Hum Pathol. 2013, 44: 2097-2105.PubMedCrossRef
154.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111.PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111.PubMedCrossRef
155.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003, 100: 3983-3988.PubMedCentralPubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003, 100: 3983-3988.PubMedCentralPubMedCrossRef
156.
go back to reference Jones RJ, Matsui WH, Smith BD: Cancer stem cells: are we missing the target?. J Natl Cancer Inst. 2004, 96: 583-585.PubMedCrossRef Jones RJ, Matsui WH, Smith BD: Cancer stem cells: are we missing the target?. J Natl Cancer Inst. 2004, 96: 583-585.PubMedCrossRef
157.
go back to reference Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676.PubMedCrossRef Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676.PubMedCrossRef
158.
go back to reference Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Kim J, Whang KY, Kang YK, Yeo S, Lim HJ, Han DW, Kim DW, Oh S, Yoon BS, Schöler HR, You S: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res. 2011, 21: 1305-1315.PubMedCentralPubMedCrossRef Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Kim J, Whang KY, Kang YK, Yeo S, Lim HJ, Han DW, Kim DW, Oh S, Yoon BS, Schöler HR, You S: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res. 2011, 21: 1305-1315.PubMedCentralPubMedCrossRef
159.
go back to reference Moon JH, Yun W, Kim J, Hyeon S, Kang PJ, Park G, Kim A, Oh S, Whang KY, Kim DW, Yoon BS, You S: Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem Biophys Res Commun. 2013, 431: 444-449.PubMedCrossRef Moon JH, Yun W, Kim J, Hyeon S, Kang PJ, Park G, Kim A, Oh S, Whang KY, Kim DW, Yoon BS, You S: Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem Biophys Res Commun. 2013, 431: 444-449.PubMedCrossRef
160.
go back to reference Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, Li DM, Zhao Q: Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012, 31: 29-PubMedCentralPubMedCrossRef Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, Li DM, Zhao Q: Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012, 31: 29-PubMedCentralPubMedCrossRef
161.
go back to reference Huang J, Song H, Liu B, Yu B, Wang R, Chen L: Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res. 2013, 32: 84-PubMedCentralPubMedCrossRef Huang J, Song H, Liu B, Yu B, Wang R, Chen L: Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res. 2013, 32: 84-PubMedCentralPubMedCrossRef
162.
go back to reference Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S, Habu N, Otsuka K, Sato Y, Watanabe Y, Ozawa H, Tomita T, Kameyama K, Fujii M, Ogawa K: Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2014, 33: 40-PubMedCentralPubMedCrossRef Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S, Habu N, Otsuka K, Sato Y, Watanabe Y, Ozawa H, Tomita T, Kameyama K, Fujii M, Ogawa K: Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2014, 33: 40-PubMedCentralPubMedCrossRef
163.
go back to reference Zhuo W, Wang Y, Zhuo X, Zhang Y, Ao X, Chen Z: Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer. 2008, 62: 8-14.PubMedCrossRef Zhuo W, Wang Y, Zhuo X, Zhang Y, Ao X, Chen Z: Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer. 2008, 62: 8-14.PubMedCrossRef
164.
go back to reference Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tzeng CH, Wu KJ, Kao JY, Yang MH: Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res. 2010, 16: 4561-4571.PubMedCrossRef Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tzeng CH, Wu KJ, Kao JY, Yang MH: Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res. 2010, 16: 4561-4571.PubMedCrossRef
165.
go back to reference Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H: EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012, 12: 91-PubMedCentralPubMedCrossRef Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H: EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012, 12: 91-PubMedCentralPubMedCrossRef
166.
go back to reference Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009, 27: 2059-2068.PubMedCrossRef Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009, 27: 2059-2068.PubMedCrossRef
167.
go back to reference Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M: Expression of Snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res. 2007, 141: 196-203.PubMedCrossRef Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M: Expression of Snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res. 2007, 141: 196-203.PubMedCrossRef
168.
go back to reference Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004, 18: 1131-1141.PubMedCentralPubMedCrossRef Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004, 18: 1131-1141.PubMedCentralPubMedCrossRef
169.
go back to reference Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B: Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 2009, 69: 8376-8385.PubMedCrossRef Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B: Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 2009, 69: 8376-8385.PubMedCrossRef
170.
go back to reference Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B: Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res. 2005, 65: 264-276.PubMed Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B: Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res. 2005, 65: 264-276.PubMed
171.
go back to reference Vega MI, Baritaki S, Huerta-Yepez S, Martinez-Paniagua MA, Bonavida B: A potential mechanism of rituximab-induced inhibition of tumorgrowth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leuk Lymphoma. 2011, 52: 108-121.PubMedCrossRef Vega MI, Baritaki S, Huerta-Yepez S, Martinez-Paniagua MA, Bonavida B: A potential mechanism of rituximab-induced inhibition of tumorgrowth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leuk Lymphoma. 2011, 52: 108-121.PubMedCrossRef
172.
go back to reference Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F, Chouaib S: EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy. 2013, 9: 1104-1106.PubMedCentralPubMedCrossRef Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F, Chouaib S: EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy. 2013, 9: 1104-1106.PubMedCentralPubMedCrossRef
173.
go back to reference Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S: Epithelial-to mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 2013, 73: 2418-2427.PubMedCrossRef Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S: Epithelial-to mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 2013, 73: 2418-2427.PubMedCrossRef
174.
go back to reference Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH, Choi D, Ha NC, Park BJ: p53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009, 28: 2005-2014.PubMedCrossRef Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH, Choi D, Ha NC, Park BJ: p53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009, 28: 2005-2014.PubMedCrossRef
175.
go back to reference Lee SH, Shen GN, Jung YS, Lee SJ, Chung JY, Kim HS, Xu Y, Choi Y, Lee JW, Ha NC, Song GY, Park BJ: Antitumor effect of novel small chemical inhibitors of Snail-p53 binding in K-Ras-mutated cancer cells. Oncogene. 2010, 29: 4576-4587.PubMedCrossRef Lee SH, Shen GN, Jung YS, Lee SJ, Chung JY, Kim HS, Xu Y, Choi Y, Lee JW, Ha NC, Song GY, Park BJ: Antitumor effect of novel small chemical inhibitors of Snail-p53 binding in K-Ras-mutated cancer cells. Oncogene. 2010, 29: 4576-4587.PubMedCrossRef
176.
177.
go back to reference Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, Maheswaran S, Ramaswamy S, Whetstine JR, Haber DA: Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep. 2013, 5: 1679-1689.PubMedCentralPubMedCrossRef Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, Maheswaran S, Ramaswamy S, Whetstine JR, Haber DA: Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep. 2013, 5: 1679-1689.PubMedCentralPubMedCrossRef
178.
go back to reference Shah P, Gau Y, Sabnis G: Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat. 2014, 143: 99-111.PubMedCrossRef Shah P, Gau Y, Sabnis G: Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat. 2014, 143: 99-111.PubMedCrossRef
179.
go back to reference Hatzivassiliou G, Haling JF, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M: Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013, 501: 232-236.PubMedCrossRef Hatzivassiliou G, Haling JF, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M: Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013, 501: 232-236.PubMedCrossRef
180.
go back to reference Miller C, Oliver K, Farley J: MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol. 2014, 133: 128-137.PubMedCrossRef Miller C, Oliver K, Farley J: MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol. 2014, 133: 128-137.PubMedCrossRef
181.
go back to reference McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012, 3: 1068-1111.PubMedCentralPubMedCrossRef McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012, 3: 1068-1111.PubMedCentralPubMedCrossRef
182.
go back to reference NIH Database.. .,http://clinicaltrials.gov NIH Database.. .,http://​clinicaltrials.​gov
183.
go back to reference Mimasu S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S: Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25Å. Biochem Biophys Res Commun. 2008, 366: 15-22.PubMedCrossRef Mimasu S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S: Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25Å. Biochem Biophys Res Commun. 2008, 366: 15-22.PubMedCrossRef
184.
go back to reference Pubchem Database.. [],http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=444732&loc=ec_rcs Pubchem Database.. [],http://​pubchem.​ncbi.​nlm.​nih.​gov/​summary/​summary.​cgi?​cid=​444732&​loc=​ec_​rcs
185.
go back to reference Pubchem Database.. [],http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4688&loc=ec_rcs Pubchem Database.. [],http://​pubchem.​ncbi.​nlm.​nih.​gov/​summary/​summary.​cgi?​cid=​4688&​loc=​ec_​rcs
186.
go back to reference Pubchem Database.. [],http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6918837 Pubchem Database.. [],http://​pubchem.​ncbi.​nlm.​nih.​gov/​summary/​summary.​cgi?​cid=​6918837
187.
go back to reference Pubchem Database.. [],http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4261 Pubchem Database.. [],http://​pubchem.​ncbi.​nlm.​nih.​gov/​summary/​summary.​cgi?​cid=​4261
Metadata
Title
Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention
Authors
Samantha Kaufhold
Benjamin Bonavida
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2014
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-014-0062-0

Other articles of this Issue 1/2014

Journal of Experimental & Clinical Cancer Research 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine