Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Cancer Immunotherapy | Research

Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy

Authors: Hye-Ran Kim, Jeong-Su Park, Jin-Hwa Park, Fatima Yasmin, Chang-Hyun Kim, Se Kyu Oh, Ik-Joo Chung, Chang-Duk Jun

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Background

Transgelin-2 is a 22 kDa actin-binding protein that has been proposed to act as an oncogenic factor, capable of contributing to tumorigenesis in a wide range of human malignancies. However, little is known whether this tiny protein also plays an important role in immunity, thereby keeping body from the cancer development and metastasis. Here, we investigated the functions of transgelin-2 in dendritic cell (DC) immunity. Further, we investigated whether the non-viral transduction of cell-permeable transgelin-2 peptide potentially enhance DC-based cancer immunotherapy.

Methods

To understand the functions of transgelin-2 in DCs, we utilized bone marrow-derived DCs (BMDCs) purified from transgelin-2 knockout (Tagln2−/−) mice. To observe the dynamic cellular mechanism of transgelin-2, we utilized confocal microscopy and flow cytometry. To monitor DC migration and cognate T–DC interaction in vivo, we used intravital two-photon microscopy. For the solid and metastasis tumor models, OVA+ B16F10 melanoma were inoculated into the C57BL/6 mice via intravenously (i.v.) and subcutaneously (s.c.), respectively. OTI TCR T cells were used for the adoptive transfer experiments. Cell-permeable, de-ubiquitinated recombinant transgelin-2 was purified from Escherichia coli and applied for DC-based adoptive immunotherapy.

Results

We found that transgelin-2 is remarkably expressed in BMDCs during maturation and lipopolysaccharide activation, suggesting that this protein plays a role in DC-based immunity. Although Tagln2−/− BMDCs exhibited no changes in maturation, they showed significant defects in their abilities to home to draining lymph nodes (LNs) and prime T cells to produce antigen-specific T cell clones, and these changes were associated with a failure to suppress tumor growth and metastasis of OVA+ B16F10 melanoma cells in mice. Tagln2−/− BMDCs had defects in filopodia-like membrane protrusion and podosome formation due to the attenuation of the signals that modulate actin remodeling in vitro and formed short, unstable contacts with cognate CD4+ T cells in vivo. Strikingly, non-viral transduction of cell-permeable, de-ubiquitinated recombinant transgelin-2 potentiated DC functions to suppress tumor growth and metastasis.

Conclusion

This work demonstrates that transgelin-2 is an essential protein for both cancer and immunity. Therefore, transgelin-2 can act as a double-edged sword depending on how we apply this protein to cancer therapy. Engineering and clinical application of this protein may unveil a new era in DC-based cancer immunotherapy. Our findings indicate that cell-permeable transgelin-2 have a potential clinical value as a cancer immunotherapy based on DCs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18(6):767–811.PubMedCrossRef Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18(6):767–811.PubMedCrossRef
2.
go back to reference Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell. 2001;106(3):263–6.PubMedCrossRef Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell. 2001;106(3):263–6.PubMedCrossRef
3.
go back to reference Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23(1):975–1028.PubMedCrossRef Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23(1):975–1028.PubMedCrossRef
5.
go back to reference West MA, Prescott AR, Eskelinen EL, Ridley AJ, Watts C. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol. 2000;10(14):839–48.PubMedCrossRef West MA, Prescott AR, Eskelinen EL, Ridley AJ, Watts C. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol. 2000;10(14):839–48.PubMedCrossRef
6.
go back to reference Nobes C, Marsh M. Dendritic cells: New roles for Cdc42 and Rac in antigen uptake? Curr Biol. 2000;10(20):739–41.CrossRef Nobes C, Marsh M. Dendritic cells: New roles for Cdc42 and Rac in antigen uptake? Curr Biol. 2000;10(20):739–41.CrossRef
7.
go back to reference Tanizaki H, Egawa G, Inaba K, Honda T, Nakajima S, Moniaga CS, et al. Rho-mDial pathway is required for adhesion, migration, and T-cell stimulation in dendritic cells. Blood. 2010;116(26):5875–84.PubMedCrossRef Tanizaki H, Egawa G, Inaba K, Honda T, Nakajima S, Moniaga CS, et al. Rho-mDial pathway is required for adhesion, migration, and T-cell stimulation in dendritic cells. Blood. 2010;116(26):5875–84.PubMedCrossRef
8.
go back to reference Snapper SB, Meelu P, Nguyen D, Stockton BM, Bozza P, Alt FW, et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol. 2005;77(June):993–8.PubMedCrossRef Snapper SB, Meelu P, Nguyen D, Stockton BM, Bozza P, Alt FW, et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol. 2005;77(June):993–8.PubMedCrossRef
9.
go back to reference Calle Y, Chou HC, Thrasher AJ, Jones GE. Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J Pathol. 2004;204(4):460–9.PubMedCrossRef Calle Y, Chou HC, Thrasher AJ, Jones GE. Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J Pathol. 2004;204(4):460–9.PubMedCrossRef
10.
go back to reference Bouma G, Burns S, Thrasher AJ. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood. 2007;110(13):4278–84.PubMedCrossRef Bouma G, Burns S, Thrasher AJ. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood. 2007;110(13):4278–84.PubMedCrossRef
11.
go back to reference Klos Dehring DA, Clarke F, Ricart BG, Huang Y, Gomez TS, Williamson EK, et al. Hematopoietic lineage cell-specific protein 1 functions in concert with the Wiskott–Aldrich syndrome protein to promote podosome array organization and chemotaxis in dendritic cells. J Immunol. 2011;186(8):4805–18.CrossRef Klos Dehring DA, Clarke F, Ricart BG, Huang Y, Gomez TS, Williamson EK, et al. Hematopoietic lineage cell-specific protein 1 functions in concert with the Wiskott–Aldrich syndrome protein to promote podosome array organization and chemotaxis in dendritic cells. J Immunol. 2011;186(8):4805–18.CrossRef
12.
go back to reference Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, et al. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. J Immunol. 2011;187(11):5952–63.PubMedPubMedCentralCrossRef Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, et al. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. J Immunol. 2011;187(11):5952–63.PubMedPubMedCentralCrossRef
13.
go back to reference Shapland C, Hsuan JJ, Totty NF, Lawson D. Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. J Cell Biol. 1993;121(5):1065–73.PubMedCrossRef Shapland C, Hsuan JJ, Totty NF, Lawson D. Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. J Cell Biol. 1993;121(5):1065–73.PubMedCrossRef
14.
go back to reference Meng T, Liu L, Hao R, Chen S, Dong Y. Transgelin-2: A potential oncogenic factor. Tumor Biol. 2017;39(6):101042831770265.CrossRef Meng T, Liu L, Hao R, Chen S, Dong Y. Transgelin-2: A potential oncogenic factor. Tumor Biol. 2017;39(6):101042831770265.CrossRef
15.
go back to reference Jin H, Cheng X, Pei Y, Fu J, Lyu Z, Peng H, et al. Identification and verification of transgelin-2 as a potential biomarker of tumor-derived lung-cancer endothelial cells by comparative proteomics. J Proteomics. 2016;136:77–88.PubMedCrossRef Jin H, Cheng X, Pei Y, Fu J, Lyu Z, Peng H, et al. Identification and verification of transgelin-2 as a potential biomarker of tumor-derived lung-cancer endothelial cells by comparative proteomics. J Proteomics. 2016;136:77–88.PubMedCrossRef
16.
go back to reference Na BR, Kim HR, Piragyte I, Oh HM, Kwon MS, Akber U, et al. TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. J Cell Biol. 2015;209(1):143–62.PubMedPubMedCentralCrossRef Na BR, Kim HR, Piragyte I, Oh HM, Kwon MS, Akber U, et al. TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. J Cell Biol. 2015;209(1):143–62.PubMedPubMedCentralCrossRef
17.
go back to reference Jeon B-N, Kim H-R, Chung YS, Na B-R, Park H, Hong C, et al. Actin stabilizer TAGLN2 potentiates adoptive T cell therapy by boosting the inside-out costimulation via lymphocyte function-associated antigen-1. Oncoimmunology. 2018;7(12):e1500674.PubMedPubMedCentralCrossRef Jeon B-N, Kim H-R, Chung YS, Na B-R, Park H, Hong C, et al. Actin stabilizer TAGLN2 potentiates adoptive T cell therapy by boosting the inside-out costimulation via lymphocyte function-associated antigen-1. Oncoimmunology. 2018;7(12):e1500674.PubMedPubMedCentralCrossRef
18.
go back to reference Kim H-R, Kwon M-S, Lee S, Mun Y, Lee K-S, Kim C-H, et al. TAGLN2 polymerizes G-actin in a low-ionic state but blocks Arp2/3-nucleated actin branching in a physiologic condition. Sci Rep. 2018;8(1):5503–18.PubMedPubMedCentralCrossRef Kim H-R, Kwon M-S, Lee S, Mun Y, Lee K-S, Kim C-H, et al. TAGLN2 polymerizes G-actin in a low-ionic state but blocks Arp2/3-nucleated actin branching in a physiologic condition. Sci Rep. 2018;8(1):5503–18.PubMedPubMedCentralCrossRef
19.
go back to reference Kim H-R, Lee H-S, Lee K-S, Jung ID, Kwon M-S, Kim C-H, et al. An essential role for TAGLN2 in phagocytosis of lipopolysaccharide-activated macrophages. Sci Rep. 2017;7(1):8731–44.PubMedPubMedCentralCrossRef Kim H-R, Lee H-S, Lee K-S, Jung ID, Kwon M-S, Kim C-H, et al. An essential role for TAGLN2 in phagocytosis of lipopolysaccharide-activated macrophages. Sci Rep. 2017;7(1):8731–44.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Al-Alwan MM, Rowden G, Lee TDG, West KA. Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol. 2001;166(1):338–45.PubMedCrossRef Al-Alwan MM, Rowden G, Lee TDG, West KA. Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol. 2001;166(1):338–45.PubMedCrossRef
22.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef
23.
go back to reference Jo S, Kim HR, Mun YV, Jun CD. Transgelin-2 in immunity: Its implication in cell therapy. J Leukoc Biol. 2018;104(5):903–10.PubMedCrossRef Jo S, Kim HR, Mun YV, Jun CD. Transgelin-2 in immunity: Its implication in cell therapy. J Leukoc Biol. 2018;104(5):903–10.PubMedCrossRef
24.
go back to reference Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207(6):1273–81.PubMedPubMedCentralCrossRef Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207(6):1273–81.PubMedPubMedCentralCrossRef
25.
go back to reference Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J Exp Med. 2010;207(6):1283–92.PubMedPubMedCentralCrossRef Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J Exp Med. 2010;207(6):1283–92.PubMedPubMedCentralCrossRef
26.
go back to reference Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.PubMedPubMedCentralCrossRef Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.PubMedPubMedCentralCrossRef
27.
go back to reference West MA, Prescott AR, Kui MC, Zhou Z, Rose-John S, Scheller J, et al. TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J Cell Biol. 2008;182(5):993–1005.PubMedPubMedCentralCrossRef West MA, Prescott AR, Kui MC, Zhou Z, Rose-John S, Scheller J, et al. TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J Cell Biol. 2008;182(5):993–1005.PubMedPubMedCentralCrossRef
28.
go back to reference Tagami H, Aiba S, Nakagawa S, Ozawa H, Miyake K, Yagita H. Up-regulation of α4 integrin on activated langerhans cells: analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes. J Invest Dermatol. 1993;100(2):143–7.PubMedCrossRef Tagami H, Aiba S, Nakagawa S, Ozawa H, Miyake K, Yagita H. Up-regulation of α4 integrin on activated langerhans cells: analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes. J Invest Dermatol. 1993;100(2):143–7.PubMedCrossRef
29.
go back to reference Hemler ME. VlA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400.PubMedCrossRef Hemler ME. VlA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400.PubMedCrossRef
30.
go back to reference Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol. 2006;176(9):5153–9.PubMedCrossRef Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol. 2006;176(9):5153–9.PubMedCrossRef
31.
go back to reference Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: Balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.PubMedCrossRef Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: Balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.PubMedCrossRef
32.
go back to reference Kobayashi D, Endo M, Ochi H, Hojo H, Miyasaka M, Hayasaka H. Regulation of CCR7-dependent cell migration through CCR7 homodimer formation. Sci Rep. 2017;7(1):8536–50.PubMedPubMedCentralCrossRef Kobayashi D, Endo M, Ochi H, Hojo H, Miyasaka M, Hayasaka H. Regulation of CCR7-dependent cell migration through CCR7 homodimer formation. Sci Rep. 2017;7(1):8536–50.PubMedPubMedCentralCrossRef
33.
go back to reference Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, et al. Ubisite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol. 2018;25(7):631–40.PubMedCrossRef Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, et al. Ubisite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol. 2018;25(7):631–40.PubMedCrossRef
34.
go back to reference Al-Alwan MM, Rowden G, Lee TDG, West KA. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol. 2001;166(3):1452–6.PubMedCrossRef Al-Alwan MM, Rowden G, Lee TDG, West KA. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol. 2001;166(3):1452–6.PubMedCrossRef
35.
go back to reference Reina M, Espel E. Role of LFA-1 and ICAM-1 in cancer. Cancers (Basel). 2017;9(11):153.CrossRef Reina M, Espel E. Role of LFA-1 and ICAM-1 in cancer. Cancers (Basel). 2017;9(11):153.CrossRef
36.
go back to reference Lu W, Dong Z, Donawho C, Fidler IJ. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer. 2002;100(4):486–90.CrossRef Lu W, Dong Z, Donawho C, Fidler IJ. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer. 2002;100(4):486–90.CrossRef
37.
go back to reference Schroder C, Witzel I, Muller V, Krenkel S, Wirtz RM, Janicke F, et al. Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J Cancer Res Clin Oncol. 2011;137(8):1193–201.PubMedCrossRef Schroder C, Witzel I, Muller V, Krenkel S, Wirtz RM, Janicke F, et al. Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J Cancer Res Clin Oncol. 2011;137(8):1193–201.PubMedCrossRef
38.
go back to reference Yoshida A, Okamoto N, Tozawa-Ono A, Koizumi H, Kiguchi K, Ishizuka B, et al. Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Hum Cell. 2013;26(2):56–66.PubMedPubMedCentralCrossRef Yoshida A, Okamoto N, Tozawa-Ono A, Koizumi H, Kiguchi K, Ishizuka B, et al. Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Hum Cell. 2013;26(2):56–66.PubMedPubMedCentralCrossRef
39.
go back to reference Na BR, Jun CD. TAGLN2-mediated actin stabilization at the immunological synapse: implication for cytotoxic T cell control of target cells. BMB Rep. 2015;48(7):369–70.PubMedPubMedCentralCrossRef Na BR, Jun CD. TAGLN2-mediated actin stabilization at the immunological synapse: implication for cytotoxic T cell control of target cells. BMB Rep. 2015;48(7):369–70.PubMedPubMedCentralCrossRef
40.
go back to reference Yin LM, Ulloa L, Yang YQ. Transgelin-2: biochemical and clinical implications in cancer and asthma. Trends Biochem Sci. 2019;44(10):885–96.PubMedCrossRef Yin LM, Ulloa L, Yang YQ. Transgelin-2: biochemical and clinical implications in cancer and asthma. Trends Biochem Sci. 2019;44(10):885–96.PubMedCrossRef
41.
go back to reference Fisher PJ, Bulur PA, Vuk-Pavlovic S, Prendergast FG, Dietz AB, Doc SVC, et al. Dendritic cell microvilli—a novel membrane structure associated with the multifocal synapse and T cell clustering. Blood. 2008;112(13):5037–46.PubMedCrossRef Fisher PJ, Bulur PA, Vuk-Pavlovic S, Prendergast FG, Dietz AB, Doc SVC, et al. Dendritic cell microvilli—a novel membrane structure associated with the multifocal synapse and T cell clustering. Blood. 2008;112(13):5037–46.PubMedCrossRef
42.
go back to reference Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G, et al. Multifocal structure of the T cell—dendritic cell synapse. Eur J Immunol. 2005;35(6):1741–53.PubMedCrossRef Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G, et al. Multifocal structure of the T cell—dendritic cell synapse. Eur J Immunol. 2005;35(6):1741–53.PubMedCrossRef
43.
go back to reference Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;2018(9):3630–48.CrossRef Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;2018(9):3630–48.CrossRef
44.
go back to reference Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci. 2016;113(40):E5916–24.PubMedCrossRef Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci. 2016;113(40):E5916–24.PubMedCrossRef
Metadata
Title
Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy
Authors
Hye-Ran Kim
Jeong-Su Park
Jin-Hwa Park
Fatima Yasmin
Chang-Hyun Kim
Se Kyu Oh
Ik-Joo Chung
Chang-Duk Jun
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01058-6

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine