Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2020

Open Access 01-12-2020 | Cancer Therapy | Review

The design and development of covalent protein-protein interaction inhibitors for cancer treatment

Authors: Sha-Sha Cheng, Guan-Jun Yang, Wanhe Wang, Chung-Hang Leung, Dik-Lung Ma

Published in: Journal of Hematology & Oncology | Issue 1/2020

Login to get access

Abstract

Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Literature
1.
go back to reference Mabonga L, Kappo AP. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys Rev. 2019;11(4):559–81.PubMedPubMedCentral Mabonga L, Kappo AP. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys Rev. 2019;11(4):559–81.PubMedPubMedCentral
2.
go back to reference Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein–protein interaction networks. J Proteome Res. 2012;11(4):2014–31.PubMed Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein–protein interaction networks. J Proteome Res. 2012;11(4):2014–31.PubMed
4.
go back to reference Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev. 2015;263(1):279–301.PubMedPubMedCentral Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev. 2015;263(1):279–301.PubMedPubMedCentral
5.
go back to reference Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol. 2019;50:55–65.PubMedPubMedCentral Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol. 2019;50:55–65.PubMedPubMedCentral
6.
go back to reference Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: technological strategies and opportunities. Mass Spectrom Rev. 2019;38(1):79–111.PubMed Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: technological strategies and opportunities. Mass Spectrom Rev. 2019;38(1):79–111.PubMed
7.
go back to reference Pattin KA, Moore JH. Role for protein–protein interaction databases in human genetics. Expert Rev Proteomic. 2009;6(6):647–59. Pattin KA, Moore JH. Role for protein–protein interaction databases in human genetics. Expert Rev Proteomic. 2009;6(6):647–59.
8.
go back to reference Hu G, Wu Z, Uversky V, Kurgan L. Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci. 2017;18(12):2761.PubMedCentral Hu G, Wu Z, Uversky V, Kurgan L. Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci. 2017;18(12):2761.PubMedCentral
9.
go back to reference Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays. 2013;35(12):1050–5.PubMedPubMedCentral Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays. 2013;35(12):1050–5.PubMedPubMedCentral
10.
go back to reference Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med. 2013;5(4):37.PubMedPubMedCentral Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med. 2013;5(4):37.PubMedPubMedCentral
11.
go back to reference Ori A, Iskar M, Buczak K, Kastritis P, Parca L, Andrés-Pons A, Singer S, Bork P, Beck M. Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol. 2016;17(1):47.PubMedPubMedCentral Ori A, Iskar M, Buczak K, Kastritis P, Parca L, Andrés-Pons A, Singer S, Bork P, Beck M. Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol. 2016;17(1):47.PubMedPubMedCentral
12.
go back to reference Yang GJ, Wang W, Mok SWF, Wu C, Law BYK, Miao XM, et al. Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium (III) complex for triple-negative breast cancer therapy. Angew Chem Int Ed. 2018;57(40):13091–5. Yang GJ, Wang W, Mok SWF, Wu C, Law BYK, Miao XM, et al. Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium (III) complex for triple-negative breast cancer therapy. Angew Chem Int Ed. 2018;57(40):13091–5.
13.
go back to reference Ivanov AA, Khuri FR, Fu H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34(7):393–400.PubMedPubMedCentral Ivanov AA, Khuri FR, Fu H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34(7):393–400.PubMedPubMedCentral
14.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed
15.
go back to reference Garner AL, Janda KD. Protein-protein interactions and cancer: targeting the central dogma. Curr Top Med Chem. 2011;11(3):258–80.PubMed Garner AL, Janda KD. Protein-protein interactions and cancer: targeting the central dogma. Curr Top Med Chem. 2011;11(3):258–80.PubMed
16.
go back to reference Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang Y, Xuan Y, Qin Y, Jiao WJT. Overexpression of S100A13 protein is associated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Thoracic Cancer. 2018;9(9):1136–44.PubMedPubMedCentral Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang Y, Xuan Y, Qin Y, Jiao WJT. Overexpression of S100A13 protein is associated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Thoracic Cancer. 2018;9(9):1136–44.PubMedPubMedCentral
17.
go back to reference Han H, Zhan Z, Xu J, Song ZJO. Therapy: TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. OncoTargets Ther. 2019;12:11371–82. Han H, Zhan Z, Xu J, Song ZJO. Therapy: TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. OncoTargets Ther. 2019;12:11371–82.
18.
go back to reference Huang Y, Liu N, Liu J, et al. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle. 2019;18(24):3442–55.PubMedPubMedCentral Huang Y, Liu N, Liu J, et al. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle. 2019;18(24):3442–55.PubMedPubMedCentral
19.
go back to reference Ryan DP, Matthews JM. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15(4):441–6.PubMed Ryan DP, Matthews JM. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15(4):441–6.PubMed
20.
go back to reference Bowler EH, Wang Z, Ewing RM. How do oncoprotein mutations rewire protein–protein interaction networks? 2015;12(5):449–55. Bowler EH, Wang Z, Ewing RM. How do oncoprotein mutations rewire protein–protein interaction networks? 2015;12(5):449–55.
21.
go back to reference Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol. 2009;5(12):e1000601.PubMedPubMedCentral Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol. 2009;5(12):e1000601.PubMedPubMedCentral
22.
go back to reference Nero TL, Morton CJ, Holien JK, et al. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer. 2014;14(4):248–62.PubMed Nero TL, Morton CJ, Holien JK, et al. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer. 2014;14(4):248–62.PubMed
23.
24.
go back to reference Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–14.PubMedPubMedCentral Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–14.PubMedPubMedCentral
25.
go back to reference Basse MJ, Betzi S, Morelli X, et al. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions. Database. 2016;2016. Basse MJ, Betzi S, Morelli X, et al. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions. Database. 2016;2016.
26.
go back to reference Cossar PJ, Lewis PJ, McCluskey A. Protein-protein interactions as antibiotic targets: a medicinal chemistry perspective. Med Res Rev. 2018:1–26. Cossar PJ, Lewis PJ, McCluskey A. Protein-protein interactions as antibiotic targets: a medicinal chemistry perspective. Med Res Rev. 2018:1–26.
27.
go back to reference Raj M, Bullock BN, Arora PS. Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem. 2013;21(14):4051–7.PubMed Raj M, Bullock BN, Arora PS. Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem. 2013;21(14):4051–7.PubMed
28.
go back to reference London N, Raveh B, Movshovitz, Attias D, et al. Can self-inhibitory peptides be derived from the interfaces of globular protein–protein interactions? Proteins. 2010;78(15):3140–9.PubMedPubMedCentral London N, Raveh B, Movshovitz, Attias D, et al. Can self-inhibitory peptides be derived from the interfaces of globular protein–protein interactions? Proteins. 2010;78(15):3140–9.PubMedPubMedCentral
29.
go back to reference He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, et al. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein–protein interaction. J Med Chem. 2014;57(4):1543–56.PubMedPubMedCentral He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, et al. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein–protein interaction. J Med Chem. 2014;57(4):1543–56.PubMedPubMedCentral
30.
go back to reference Bourgeas R, Basse M-J, Morelli X, Roche PJP. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. 2010;5(3):e9598. Bourgeas R, Basse M-J, Morelli X, Roche PJP. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. 2010;5(3):e9598.
31.
go back to reference Basse MJ, Betzi S, Bourgeas R, Bouzidi S, Chetrit B, Hamon V, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acids Res. 2012;41(D1):D824–7.PubMedPubMedCentral Basse MJ, Betzi S, Bourgeas R, Bouzidi S, Chetrit B, Hamon V, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acids Res. 2012;41(D1):D824–7.PubMedPubMedCentral
32.
go back to reference Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2. Update of a database holding small molecules modulating protein–protein interactions. Database. 2013;2013. Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2. Update of a database holding small molecules modulating protein–protein interactions. Database. 2013;2013.
33.
go back to reference Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein–protein interactions. Drug Discov Today. 2013;18(19-20):958–68.PubMed Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein–protein interactions. Drug Discov Today. 2013;18(19-20):958–68.PubMed
34.
go back to reference Choi S, Choi KY. Screening-based approaches to identify small molecules that inhibit protein-protein interactions. Expert Opin Drug Discovery. 2017;12(3):293–303. Choi S, Choi KY. Screening-based approaches to identify small molecules that inhibit protein-protein interactions. Expert Opin Drug Discovery. 2017;12(3):293–303.
35.
go back to reference Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203.PubMed Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203.PubMed
36.
go back to reference Jin L, Wang W, Fang G. Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol. 2014;54:435–56.PubMed Jin L, Wang W, Fang G. Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol. 2014;54:435–56.PubMed
37.
go back to reference Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.PubMed Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.PubMed
38.
go back to reference Zhong HJ, Lu L, Leung KH, Wong CC, Peng C, Yan SC, et al. An iridium (III)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci. 2015;6(10):5400–8.PubMedPubMedCentral Zhong HJ, Lu L, Leung KH, Wong CC, Peng C, Yan SC, et al. An iridium (III)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci. 2015;6(10):5400–8.PubMedPubMedCentral
39.
go back to reference Bjij I, Ramharack P, Khan S, Cherqaoui D, Soliman MEJM. Tracing potential covalent inhibitors of an E3 ubiquitin ligase through target-focused modelling. Molecules. 2019;24(17):3125.PubMedCentral Bjij I, Ramharack P, Khan S, Cherqaoui D, Soliman MEJM. Tracing potential covalent inhibitors of an E3 ubiquitin ligase through target-focused modelling. Molecules. 2019;24(17):3125.PubMedCentral
40.
go back to reference Lonsdale R, Ward RA. Structure-based design of targeted covalent inhibitors. Chem Soc Rev. 2018;47(11):3816–30.PubMed Lonsdale R, Ward RA. Structure-based design of targeted covalent inhibitors. Chem Soc Rev. 2018;47(11):3816–30.PubMed
41.
go back to reference Walter AO, Sjin RTT, Haringsma HJ, Ohashi K, Sun J, Lee K, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013;3(12):1404–15.PubMedPubMedCentral Walter AO, Sjin RTT, Haringsma HJ, Ohashi K, Sun J, Lee K, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013;3(12):1404–15.PubMedPubMedCentral
42.
go back to reference Rudolph J, Stokoe D. Selective inhibition of mutant Ras protein through covalent binding. Angew Chem Int Ed. 2014;53(15):3777–9. Rudolph J, Stokoe D. Selective inhibition of mutant Ras protein through covalent binding. Angew Chem Int Ed. 2014;53(15):3777–9.
43.
go back to reference Basu D, Richters A, Rauh D. Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg Med Chem. 2015;23(12):2767–80.PubMed Basu D, Richters A, Rauh D. Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg Med Chem. 2015;23(12):2767–80.PubMed
44.
go back to reference Finlay MRV, Anderton M, Ashton S, Ballard P, Bethel PA, Box MR, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. ACS Publications. 2014:8249–67. Finlay MRV, Anderton M, Ashton S, Ballard P, Bethel PA, Box MR, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. ACS Publications. 2014:8249–67.
45.
go back to reference Barf T, Kaptein AJ. Irreversible protein kinase inhibitors: balancing the benefits and risks. J Med Chem. 2012;55(14):6243–62.PubMed Barf T, Kaptein AJ. Irreversible protein kinase inhibitors: balancing the benefits and risks. J Med Chem. 2012;55(14):6243–62.PubMed
46.
go back to reference Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat Chem Biol. 2010;6(2):133.PubMedPubMedCentral Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat Chem Biol. 2010;6(2):133.PubMedPubMedCentral
47.
go back to reference Akçay G, Belmonte MA, Aquila B, Chuaqui C, Hird AW, Lamb ML, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol. 2016;12(11):931.PubMed Akçay G, Belmonte MA, Aquila B, Chuaqui C, Hird AW, Lamb ML, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol. 2016;12(11):931.PubMed
48.
go back to reference Tsou LK, Cheng Y, Cheng YC. Therapeutic development in targeting protein–protein interactions with synthetic topological mimetics. Curr Opin Pharmacol. 2012;12(4):403–7.PubMedPubMedCentral Tsou LK, Cheng Y, Cheng YC. Therapeutic development in targeting protein–protein interactions with synthetic topological mimetics. Curr Opin Pharmacol. 2012;12(4):403–7.PubMedPubMedCentral
49.
go back to reference Wu X, Wang L, Han Y, Regan N, Li PK, Villalona MA, et al. Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library. ACS Comb Sci. 2011;13(5):486–95.PubMedPubMedCentral Wu X, Wang L, Han Y, Regan N, Li PK, Villalona MA, et al. Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library. ACS Comb Sci. 2011;13(5):486–95.PubMedPubMedCentral
50.
go back to reference Wu C, Yao M, Li W, Cui B, Dong H, Ren Y, Yang C, Gan CJM. Simultaneous determination and pharmacokinetics study of six triterpenes in rat plasma by UHPLC-MS/MS after oral administration of sanguisorba officinalis L extract. Molecules. 2018;23(11):2980.PubMedCentral Wu C, Yao M, Li W, Cui B, Dong H, Ren Y, Yang C, Gan CJM. Simultaneous determination and pharmacokinetics study of six triterpenes in rat plasma by UHPLC-MS/MS after oral administration of sanguisorba officinalis L extract. Molecules. 2018;23(11):2980.PubMedCentral
51.
go back to reference Liu L, Leung K, Chan DS, Wang Y, Ma D. Leung CH, disease: Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis. 2014;5(6):e1293.PubMedPubMedCentral Liu L, Leung K, Chan DS, Wang Y, Ma D. Leung CH, disease: Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis. 2014;5(6):e1293.PubMedPubMedCentral
52.
go back to reference Jubb H, Higueruelo AP, Winter A, Blundell TL. Structural biology and drug discovery for protein-protein interactions. Trends Pharmacol Sci. 2012;33(5):241–8.PubMed Jubb H, Higueruelo AP, Winter A, Blundell TL. Structural biology and drug discovery for protein-protein interactions. Trends Pharmacol Sci. 2012;33(5):241–8.PubMed
53.
go back to reference Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson A. Proteome-wide covalent ligand discovery in native biological systems. Nature. 2016;534(7608):570.PubMedPubMedCentral Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson A. Proteome-wide covalent ligand discovery in native biological systems. Nature. 2016;534(7608):570.PubMedPubMedCentral
54.
go back to reference London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, et al. Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol. 2014;10(12):1066.PubMedPubMedCentral London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, et al. Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol. 2014;10(12):1066.PubMedPubMedCentral
55.
go back to reference Zhang Y, Zhang D, Tian H, Jiao Y, Shi Z, Ran T, et al. Identification of covalent binding sites targeting cysteines based on computational approaches. J Med Chem. 2016;13(9):3106–18. Zhang Y, Zhang D, Tian H, Jiao Y, Shi Z, Ran T, et al. Identification of covalent binding sites targeting cysteines based on computational approaches. J Med Chem. 2016;13(9):3106–18.
56.
go back to reference Zhao Z, Liu Q, Bliven S, Xie L. Bourne PEJJomc. Determining cysteines available for covalent inhibition across the human kinome. J Med Chem. 2017;60(7):2879–89.PubMedPubMedCentral Zhao Z, Liu Q, Bliven S, Xie L. Bourne PEJJomc. Determining cysteines available for covalent inhibition across the human kinome. J Med Chem. 2017;60(7):2879–89.PubMedPubMedCentral
57.
go back to reference Wu S, Luo H, Wang H, Zhao W, Hu Q, Yang YJB. The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors. Biochem Biophys Res Commun. 2016;478(3):1268–73.PubMed Wu S, Luo H, Wang H, Zhao W, Hu Q, Yang YJB. The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors. Biochem Biophys Res Commun. 2016;478(3):1268–73.PubMed
58.
go back to reference Guo Z, Li B, Cheng L-T, Zhou S, McCammon JA. Che J Identification of protein–ligand binding sites by the level-set variational implicit-solvent approach. J Chem Theory Comput. 2015;11(2):753–65.PubMedPubMedCentral Guo Z, Li B, Cheng L-T, Zhou S, McCammon JA. Che J Identification of protein–ligand binding sites by the level-set variational implicit-solvent approach. J Chem Theory Comput. 2015;11(2):753–65.PubMedPubMedCentral
59.
go back to reference Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, et al. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011;54(8):2714–26.PubMedPubMedCentral Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, et al. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011;54(8):2714–26.PubMedPubMedCentral
60.
go back to reference Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408(6815):1004.PubMed Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408(6815):1004.PubMed
61.
go back to reference Gambini L, Baggio C, Udompholkul P, Jossart J, Salem AF, et al. Covalent inhibitors of protein-protein interactions targeting lysine, tyrosine, or histidine residues. J Med Chem. 2019;62(11):5616–27.PubMedPubMedCentral Gambini L, Baggio C, Udompholkul P, Jossart J, Salem AF, et al. Covalent inhibitors of protein-protein interactions targeting lysine, tyrosine, or histidine residues. J Med Chem. 2019;62(11):5616–27.PubMedPubMedCentral
62.
go back to reference Oost TK, Sun C, Armstrong RC, Al-Assaad A-S, Betz SF, Deckwerth TL, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 2004;47(18):4417–26.PubMed Oost TK, Sun C, Armstrong RC, Al-Assaad A-S, Betz SF, Deckwerth TL, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 2004;47(18):4417–26.PubMed
63.
go back to reference Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, et al. Target identification with quantitative activity-based protein profiling (ABPP). Proteomics. 2017;17(3-4):1600212. Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, et al. Target identification with quantitative activity-based protein profiling (ABPP). Proteomics. 2017;17(3-4):1600212.
64.
65.
go back to reference Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, et al. Niessen SJNcb: A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10(9):760.PubMedPubMedCentral Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, et al. Niessen SJNcb: A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10(9):760.PubMedPubMedCentral
66.
go back to reference Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468(7325):790.PubMedPubMedCentral Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468(7325):790.PubMedPubMedCentral
67.
go back to reference Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E. Investigating the proteome reactivity and selectivity of aryl halides. J Am Chem Soc 2014;136(9):3330–3. Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E. Investigating the proteome reactivity and selectivity of aryl halides. J Am Chem Soc 2014;136(9):3330–3.
68.
go back to reference Ward CC, Kleinman JI, Nomura DK. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem Biol. 2017;12(6):1478–83.PubMedPubMedCentral Ward CC, Kleinman JI, Nomura DK. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem Biol. 2017;12(6):1478–83.PubMedPubMedCentral
69.
go back to reference Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol. 2016;23(5):567–78.PubMedPubMedCentral Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol. 2016;23(5):567–78.PubMedPubMedCentral
70.
go back to reference Anderson KE, To M, Olzmann JA, Nomura DK. Chemoproteomics-enabled covalent ligand screening reveals a thioredoxin-caspase 3 interaction disruptor that impairs breast cancer pathogenicity. ACS Chem Biol. 2017;12(10):2522–8.PubMedPubMedCentral Anderson KE, To M, Olzmann JA, Nomura DK. Chemoproteomics-enabled covalent ligand screening reveals a thioredoxin-caspase 3 interaction disruptor that impairs breast cancer pathogenicity. ACS Chem Biol. 2017;12(10):2522–8.PubMedPubMedCentral
71.
go back to reference Lu X-G, Wang Z, Cui Y, Jin Z. Computational thermodynamics, computational kinetics, and materials design. Chin Sci Bull. 2014;59(15):1662–71. Lu X-G, Wang Z, Cui Y, Jin Z. Computational thermodynamics, computational kinetics, and materials design. Chin Sci Bull. 2014;59(15):1662–71.
72.
go back to reference Honarparvar B, Govender T, Maguire GE, Soliman ME. Kruger HGJCr. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem Rev. 2013;114(1):493–537.PubMed Honarparvar B, Govender T, Maguire GE, Soliman ME. Kruger HGJCr. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem Rev. 2013;114(1):493–537.PubMed
73.
go back to reference Scarpino A, Ferenczy GG, Keserű GM. Comparative evaluation of covalent docking tools. J Chem Inf Model. 2018;58(7):1441–58.PubMed Scarpino A, Ferenczy GG, Keserű GM. Comparative evaluation of covalent docking tools. J Chem Inf Model. 2018;58(7):1441–58.PubMed
74.
go back to reference Kumalo HM, Bhakat S, Soliman ME. Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules. 2015;20(2):1984–2000.PubMedPubMedCentral Kumalo HM, Bhakat S, Soliman ME. Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules. 2015;20(2):1984–2000.PubMedPubMedCentral
75.
go back to reference Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem. 2013;34(4):326–36.PubMed Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem. 2013;34(4):326–36.PubMed
76.
go back to reference Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson A. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery. 2010;5(6):597–607. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson A. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery. 2010;5(6):597–607.
77.
go back to reference Toledo Warshaviak D, Golan G, Borrelli KW, Zhu K, Kalid O. Structure-based virtual screening approach for discovery of covalently bound ligands. J Chem Inf Model. 2014;54(7):1941–50.PubMed Toledo Warshaviak D, Golan G, Borrelli KW, Zhu K, Kalid O. Structure-based virtual screening approach for discovery of covalently bound ligands. J Chem Inf Model. 2014;54(7):1941–50.PubMed
78.
go back to reference Nguyen VS, Loh XY, Wijaya H, Wang J, Lin Q, Lam Y, et al. Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50. J Nat Prod. 2015;78(2):208–17.PubMed Nguyen VS, Loh XY, Wijaya H, Wang J, Lin Q, Lam Y, et al. Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50. J Nat Prod. 2015;78(2):208–17.PubMed
79.
go back to reference Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J Am Chem Soc. 2013;135(14):5298–301.PubMedPubMedCentral Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J Am Chem Soc. 2013;135(14):5298–301.PubMedPubMedCentral
80.
go back to reference Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KMJN. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548.PubMedPubMedCentral Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KMJN. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548.PubMedPubMedCentral
81.
go back to reference Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;0(7):507. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;0(7):507.
82.
go back to reference Craven GB, Affron DP, Allen CE, Matthies S, Greener JG, Morgan RM, et al. High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed. 2018;57(19):5257–61. Craven GB, Affron DP, Allen CE, Matthies S, Greener JG, Morgan RM, et al. High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed. 2018;57(19):5257–61.
83.
go back to reference Chen X, Zhou Y, Peng X, Yoon JJCSR. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39(6):2120–35.PubMed Chen X, Zhou Y, Peng X, Yoon JJCSR. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39(6):2120–35.PubMed
84.
go back to reference Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, et al. Identification of Cys255 in HIF-1α as a novel site for development of covalent inhibitors of HIF-1α/ARNT PasB domain protein–protein interaction. Protein Sci. 2012;21(12):1885–96.PubMedPubMedCentral Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, et al. Identification of Cys255 in HIF-1α as a novel site for development of covalent inhibitors of HIF-1α/ARNT PasB domain protein–protein interaction. Protein Sci. 2012;21(12):1885–96.PubMedPubMedCentral
85.
go back to reference Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, et al. Targeted covalent inhibition of Grb2-Sos1 interaction through proximity-induced conjugation in breast cancer cells. Mol Pharm. 2017;14(5):1548–57.PubMed Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, et al. Targeted covalent inhibition of Grb2-Sos1 interaction through proximity-induced conjugation in breast cancer cells. Mol Pharm. 2017;14(5):1548–57.PubMed
86.
go back to reference Ishiba H, Noguchi T, Shu K, Ohno H, Honda K, Kondoh Y, et al. Investigation of the inhibitory mechanism of apomorphine against MDM2-p53 interaction. Bioorg Med Chem Lett. 2017;27(11):2571–4.PubMed Ishiba H, Noguchi T, Shu K, Ohno H, Honda K, Kondoh Y, et al. Investigation of the inhibitory mechanism of apomorphine against MDM2-p53 interaction. Bioorg Med Chem Lett. 2017;27(11):2571–4.PubMed
87.
go back to reference Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol. 2017;24(8):1005–1016e1003.PubMed Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol. 2017;24(8):1005–1016e1003.PubMed
88.
go back to reference Lv Z, Yuan L, Atkison JH, Williams KM, Sessions EH, Divlianska DB, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 2018;9(1):5145.PubMedPubMedCentral Lv Z, Yuan L, Atkison JH, Williams KM, Sessions EH, Divlianska DB, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 2018;9(1):5145.PubMedPubMedCentral
89.
go back to reference He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550.PubMedPubMedCentral He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550.PubMedPubMedCentral
90.
go back to reference Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, Si Y, Xu D, et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEAD Yap protein-protein interaction. Cell Chem Biol. 2019;26(3):378–389e313.PubMed Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, Si Y, Xu D, et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEAD Yap protein-protein interaction. Cell Chem Biol. 2019;26(3):378–389e313.PubMed
91.
go back to reference Deak PE, Kim B, Abdul Qayum A, Shin J, Vitalpur G, Kloepfer KM, et al. Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen. Proc Natl Acad Sci U S A. 2019;116(18):8966–74.PubMedPubMedCentral Deak PE, Kim B, Abdul Qayum A, Shin J, Vitalpur G, Kloepfer KM, et al. Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen. Proc Natl Acad Sci U S A. 2019;116(18):8966–74.PubMedPubMedCentral
92.
go back to reference Charoenpattarapreeda J, Tan YS, Iegre J, Walsh SJ, Fowler E, Eapen RS, et al. Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chem Commun (Camb). 2019;55(55):7914–7. Charoenpattarapreeda J, Tan YS, Iegre J, Walsh SJ, Fowler E, Eapen RS, et al. Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chem Commun (Camb). 2019;55(55):7914–7.
93.
go back to reference Bakail M, Ochsenbein F. Targeting protein–protein interactions, a wide open field for drug design. Comptes Rendus Chimie. 2016;19(1-2):19–27. Bakail M, Ochsenbein F. Targeting protein–protein interactions, a wide open field for drug design. Comptes Rendus Chimie. 2016;19(1-2):19–27.
94.
go back to reference Li Y-J, Du L, Wang J, Vega R, Lee TD, Miao Y, et al. Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme. Cell Chem Biol. 2019;26(2):278–88.e276.PubMed Li Y-J, Du L, Wang J, Vega R, Lee TD, Miao Y, et al. Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme. Cell Chem Biol. 2019;26(2):278–88.e276.PubMed
95.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49.PubMed Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49.PubMed
96.
go back to reference Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B, et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012;21(4):547–62.PubMedPubMedCentral Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B, et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012;21(4):547–62.PubMedPubMedCentral
97.
go back to reference Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12(10):876–84.PubMedPubMedCentral Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12(10):876–84.PubMedPubMedCentral
98.
go back to reference Iniguez AB, Stolte B, Wang EJ, Conway AS, Alexe G, Dharia NV, et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell. 2018;33(2):202–216.e206.PubMedPubMedCentral Iniguez AB, Stolte B, Wang EJ, Conway AS, Alexe G, Dharia NV, et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell. 2018;33(2):202–216.e206.PubMedPubMedCentral
99.
go back to reference Cal PM, Vicente JB, Pires E, Coelho AV, Veiros LF, Cordeiro C, et al. Iminoboronates: a new strategy for reversible protein modification. J Am Chem Soc. 2012;134(24):10299–305.PubMed Cal PM, Vicente JB, Pires E, Coelho AV, Veiros LF, Cordeiro C, et al. Iminoboronates: a new strategy for reversible protein modification. J Am Chem Soc. 2012;134(24):10299–305.PubMed
100.
go back to reference Aguilar A, Zheng K, Xu T, Xu S, Huang L, Fernandez-Salas E, et al. Structure-based discovery of M-89 as a highly potent inhibitor of the menin-mixed lineage leukemia (Menin-MLL) protein-protein interaction. J Med Chem. 2019;62(13):6015–34.PubMedPubMedCentral Aguilar A, Zheng K, Xu T, Xu S, Huang L, Fernandez-Salas E, et al. Structure-based discovery of M-89 as a highly potent inhibitor of the menin-mixed lineage leukemia (Menin-MLL) protein-protein interaction. J Med Chem. 2019;62(13):6015–34.PubMedPubMedCentral
101.
go back to reference Zhong HJ, Lee BR, Boyle JW, Wang W, Ma D-L, Chan PWH, et al. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin–MLL interaction. Chem Commun. 2016;52(34):5788–91. Zhong HJ, Lee BR, Boyle JW, Wang W, Ma D-L, Chan PWH, et al. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin–MLL interaction. Chem Commun. 2016;52(34):5788–91.
102.
go back to reference Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer. 2018;17(1):43.PubMedPubMedCentral Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer. 2018;17(1):43.PubMedPubMedCentral
103.
go back to reference Yj M, Liang Y, Hb H, Zhao Hy WCP, Wang F, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010;70(20):7981–91. Yj M, Liang Y, Hb H, Zhao Hy WCP, Wang F, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010;70(20):7981–91.
104.
go back to reference Wang L, Zhang L, Li L, Jiang J, Zheng Z, Shang J, et al. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv. 2019;5(9):eaax2277.PubMedPubMedCentral Wang L, Zhang L, Li L, Jiang J, Zheng Z, Shang J, et al. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv. 2019;5(9):eaax2277.PubMedPubMedCentral
105.
go back to reference Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45.PubMedPubMedCentral Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45.PubMedPubMedCentral
106.
go back to reference Valkov E, Sharpe T, Marsh M, Greive S, Hyvönen M. Targeting protein–protein interactions and fragment-based drug discovery. Fragment-Based Drug Discovery and X-Ray Crystallography. 2011:145–79. Valkov E, Sharpe T, Marsh M, Greive S, Hyvönen M. Targeting protein–protein interactions and fragment-based drug discovery. Fragment-Based Drug Discovery and X-Ray Crystallography. 2011:145–79.
107.
go back to reference MC Meireles L, Mustata G. Discovery of modulators of protein-protein interactions: current approaches and limitations. Curr Top Med Chem. 2011;11(3):248–57. MC Meireles L, Mustata G. Discovery of modulators of protein-protein interactions: current approaches and limitations. Curr Top Med Chem. 2011;11(3):248–57.
108.
go back to reference Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys. 2012;45(4):383–426.PubMed Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys. 2012;45(4):383–426.PubMed
109.
go back to reference Lin L, Hutzen B, Li P-K, Ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia. 2010;12(1):39–IN35.PubMedPubMedCentral Lin L, Hutzen B, Li P-K, Ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia. 2010;12(1):39–IN35.PubMedPubMedCentral
110.
go back to reference Zhong HJ, Liu LJ, Chong C-M, Lu L, Wang M, Chan DS-H, et al. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One. 2014;9(4):e92905.PubMedPubMedCentral Zhong HJ, Liu LJ, Chong C-M, Lu L, Wang M, Chan DS-H, et al. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One. 2014;9(4):e92905.PubMedPubMedCentral
111.
go back to reference Tejo C, See YFA, Mathiew M, Chan PW. Synthesis of 1, 4-amino alcohols by Grignard reagent addition to THF and N-tosyliminobenzyliodinane. Org Biomol Chem. 2016;14(3):844–8.PubMed Tejo C, See YFA, Mathiew M, Chan PW. Synthesis of 1, 4-amino alcohols by Grignard reagent addition to THF and N-tosyliminobenzyliodinane. Org Biomol Chem. 2016;14(3):844–8.PubMed
112.
go back to reference Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, et al. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium (III) metal-based compound. Chem Sci. 2017;8(7):4756–63.PubMedPubMedCentral Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, et al. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium (III) metal-based compound. Chem Sci. 2017;8(7):4756–63.PubMedPubMedCentral
113.
go back to reference Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 2016;15(8):533–50.PubMed Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 2016;15(8):533–50.PubMed
114.
go back to reference Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol. 2011;15(4):475–81.PubMed Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol. 2011;15(4):475–81.PubMed
115.
go back to reference Wendt MD. Protein-protein interactions as drug targets. In: Protein-Protein Interactions Springer. 2012:1–55. Wendt MD. Protein-protein interactions as drug targets. In: Protein-Protein Interactions Springer. 2012:1–55.
116.
go back to reference Smith RD, Lu J, Carlson HA. Are there physicochemical differences between allosteric and competitive ligands? PLoS Comput Biol. 2017;13(11):e1005813.PubMedPubMedCentral Smith RD, Lu J, Carlson HA. Are there physicochemical differences between allosteric and competitive ligands? PLoS Comput Biol. 2017;13(11):e1005813.PubMedPubMedCentral
117.
go back to reference Long MJC, Aye Y. Privileged electrophile sensors: a resource for covalent drug development. Cell Chem Biol. 2017;24(7):787–800.PubMedPubMedCentral Long MJC, Aye Y. Privileged electrophile sensors: a resource for covalent drug development. Cell Chem Biol. 2017;24(7):787–800.PubMedPubMedCentral
118.
119.
go back to reference Joseph-McCarthy D, Campbell AJ, Kern G. Moustakas D, modeling: Fragment-based lead discovery and design. J Chem Inf Model. 2014;54(3):693–704.PubMed Joseph-McCarthy D, Campbell AJ, Kern G. Moustakas D, modeling: Fragment-based lead discovery and design. J Chem Inf Model. 2014;54(3):693–704.PubMed
120.
go back to reference Moellering RE, Cravatt BF. How chemoproteomics can enable drug discovery and development. Chem Biol. 2012;19(1):11–22.PubMedPubMedCentral Moellering RE, Cravatt BF. How chemoproteomics can enable drug discovery and development. Chem Biol. 2012;19(1):11–22.PubMedPubMedCentral
121.
go back to reference Li N, Overkleeft HS, Florea BI. Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol. 2012;16(1-2):227–33.PubMed Li N, Overkleeft HS, Florea BI. Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol. 2012;16(1-2):227–33.PubMed
122.
go back to reference Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–73.PubMed Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–73.PubMed
123.
go back to reference Schirle M, Bantscheff M. Kuster B Mass spectrometry-based proteomics in preclinical drug discovery. Anal Chem. 2012;19(1):72–84. Schirle M, Bantscheff M. Kuster B Mass spectrometry-based proteomics in preclinical drug discovery. Anal Chem. 2012;19(1):72–84.
124.
go back to reference Law FC, Yao M, Bi HC, Lam S. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans. Pharmacol Res Perspect. 2017;5(3):e00305.PubMedPubMedCentral Law FC, Yao M, Bi HC, Lam S. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans. Pharmacol Res Perspect. 2017;5(3):e00305.PubMedPubMedCentral
125.
go back to reference Way JC. Covalent modification as a strategy to block protein–protein interactions with small-molecule drugs. Curr Opin Chem Biol. 2000;4(1):40–6.PubMed Way JC. Covalent modification as a strategy to block protein–protein interactions with small-molecule drugs. Curr Opin Chem Biol. 2000;4(1):40–6.PubMed
126.
go back to reference Smith AJ, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem. 2009;52(2):225–33.PubMedPubMedCentral Smith AJ, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem. 2009;52(2):225–33.PubMedPubMedCentral
127.
go back to reference Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993.PubMed Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993.PubMed
128.
go back to reference Copeland RA, Pompliano DL, Meek TD. Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730.PubMed Copeland RA, Pompliano DL, Meek TD. Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730.PubMed
129.
go back to reference Brink A, Pähler A, Funk C, Schuler F, Schadt S. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today. 2017;22(5):751–6.PubMed Brink A, Pähler A, Funk C, Schuler F, Schadt S. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today. 2017;22(5):751–6.PubMed
130.
go back to reference González-Bello C. Designing irreversible inhibitors—worth the effort? Chem Med Chem. 2016;11(1):22–30.PubMed González-Bello C. Designing irreversible inhibitors—worth the effort? Chem Med Chem. 2016;11(1):22–30.PubMed
131.
go back to reference Baillie TA. The contributions of Sidney D. Nelson to drug metabolism research. Drug Metab. Rev. 2015;47(1):4–11. Baillie TA. The contributions of Sidney D. Nelson to drug metabolism research. Drug Metab. Rev. 2015;47(1):4–11.
132.
go back to reference Baillie TA. Targeted covalent inhibitors for drug design. Angew Chem Int Ed. 2016;55(43):13408–21. Baillie TA. Targeted covalent inhibitors for drug design. Angew Chem Int Ed. 2016;55(43):13408–21.
133.
go back to reference Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010;2(6):949–64.PubMed Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010;2(6):949–64.PubMed
134.
go back to reference Yu HS, Gao C, Lupyan D, Wu YJ, Kimura T, Wu CJ, et al. Towards atomistic modelling of irreversible covalent inhibitor binding kinetics. J Chem Inf Model. 2019;59(9):3955–67.PubMed Yu HS, Gao C, Lupyan D, Wu YJ, Kimura T, Wu CJ, et al. Towards atomistic modelling of irreversible covalent inhibitor binding kinetics. J Chem Inf Model. 2019;59(9):3955–67.PubMed
135.
go back to reference Goldman JL, Koen YM, Rogers SA, Li K, Leeder JS, Hanzlik RP. Bioactivation of trimethoprim to protein-reactive metabolites in human liver microsomes. Drug Metab Dispos. 2016;44(10):1603–7.PubMedPubMedCentral Goldman JL, Koen YM, Rogers SA, Li K, Leeder JS, Hanzlik RP. Bioactivation of trimethoprim to protein-reactive metabolites in human liver microsomes. Drug Metab Dispos. 2016;44(10):1603–7.PubMedPubMedCentral
136.
go back to reference Yang Y, Shu YZ, Humphreys WG. Label-free bottom-up proteomic workflow for simultaneously assessing the target specificity of covalent drug candidates and their off-target reactivity to selected proteins. Chem Res Toxicol. 2016;29(1):109–16.PubMed Yang Y, Shu YZ, Humphreys WG. Label-free bottom-up proteomic workflow for simultaneously assessing the target specificity of covalent drug candidates and their off-target reactivity to selected proteins. Chem Res Toxicol. 2016;29(1):109–16.PubMed
137.
go back to reference Wilson AJ, Kerns JK, Callahan JF, Moody CJ. Keap calm, and carry on covalently. J Med Chem. 2013;56(19):7463–76.PubMed Wilson AJ, Kerns JK, Callahan JF, Moody CJ. Keap calm, and carry on covalently. J Med Chem. 2013;56(19):7463–76.PubMed
138.
go back to reference Carmi C, Lodola A, Rivara S, Vacondio F, Cavazzoni AR, Alfieri R, et al. Epidermal growth factor receptor irreversible inhibitors: chemical exploration of the cysteine-trap portion. Mini-Rev Med Chem. 2011;11(12):1019–30.PubMed Carmi C, Lodola A, Rivara S, Vacondio F, Cavazzoni AR, Alfieri R, et al. Epidermal growth factor receptor irreversible inhibitors: chemical exploration of the cysteine-trap portion. Mini-Rev Med Chem. 2011;11(12):1019–30.PubMed
139.
go back to reference Lonsdale R, Burgess J, Colclough N, Davies NL, Lenz EM, Orton AL, et al. Expanding the armory: predicting and tuning covalent warhead reactivity. J Chem Inf Model. 2017;57(12):3124–37.PubMed Lonsdale R, Burgess J, Colclough N, Davies NL, Lenz EM, Orton AL, et al. Expanding the armory: predicting and tuning covalent warhead reactivity. J Chem Inf Model. 2017;57(12):3124–37.PubMed
140.
go back to reference Schwartz PA, Kuzmic P, Solowiej J, Bergqvist S, Bolanos B, Almaden C et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci 2014;111(1):173-178. Schwartz PA, Kuzmic P, Solowiej J, Bergqvist S, Bolanos B, Almaden C et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci 2014;111(1):173-178.
Metadata
Title
The design and development of covalent protein-protein interaction inhibitors for cancer treatment
Authors
Sha-Sha Cheng
Guan-Jun Yang
Wanhe Wang
Chung-Hang Leung
Dik-Lung Ma
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Cancer Therapy
Published in
Journal of Hematology & Oncology / Issue 1/2020
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-00850-0

Other articles of this Issue 1/2020

Journal of Hematology & Oncology 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine