Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2019

Open Access 01-12-2019 | Review

Technologies for circulating tumor cell separation from whole blood

Authors: Petra Bankó, Sun Young Lee, Viola Nagygyörgy, Miklós Zrínyi, Chang Hoon Chae, Dong Hyu Cho, András Telekes

Published in: Journal of Hematology & Oncology | Issue 1/2019

Login to get access

Abstract

The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis, namely, providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer, several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare, CTC methods are currently mainly used for research purposes, and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Therefore, the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits, we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages, use, and significance. Technologies using whole blood samples utilize size-based, immunoaffinity-based, and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet, they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus, a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008-2030): a population-based study. Lancet Oncol. 2012;13:790–801.PubMedCrossRef Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008-2030): a population-based study. Lancet Oncol. 2012;13:790–801.PubMedCrossRef
3.
go back to reference Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv Res. 2010;10:283.PubMedPubMedCentralCrossRef Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv Res. 2010;10:283.PubMedPubMedCentralCrossRef
4.
go back to reference McDermott U, Settleman J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol. 2009;27:5650–9.PubMedCrossRef McDermott U, Settleman J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol. 2009;27:5650–9.PubMedCrossRef
5.
go back to reference Duffy MJ, Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin Chem. 2008;54:1770–9.PubMedCrossRef Duffy MJ, Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin Chem. 2008;54:1770–9.PubMedCrossRef
6.
go back to reference Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat. 2014;17:89–95.PubMedCrossRef Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat. 2014;17:89–95.PubMedCrossRef
7.
go back to reference Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. Obstet Gynecol Surv. 2015;70:612–4.CrossRef Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. Obstet Gynecol Surv. 2015;70:612–4.CrossRef
8.
go back to reference Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15:747–56.PubMedPubMedCentralCrossRef Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15:747–56.PubMedPubMedCentralCrossRef
10.
go back to reference Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny. Neoplasia. 2008;10:1170–82.PubMedPubMedCentralCrossRef Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny. Neoplasia. 2008;10:1170–82.PubMedPubMedCentralCrossRef
11.
go back to reference Ruddon RW, Holland F. What makes a cancer cell a cancer cell? In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, et al., editors. Holland-Frei cancer medicine. 6th ed. New York: Academic Press; 2003. p. 1–29. Ruddon RW, Holland F. What makes a cancer cell a cancer cell? In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, et al., editors. Holland-Frei cancer medicine. 6th ed. New York: Academic Press; 2003. p. 1–29.
12.
14.
15.
16.
go back to reference Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10:8152–62.PubMedCrossRef Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10:8152–62.PubMedCrossRef
18.
go back to reference Rossi E, Basso U, Celadin R, Zilio F, Pucciarelli S, Aieta M, et al. M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by CellSearch analysis. Clin Cancer Res. 2010;16:5233–43.PubMedCrossRef Rossi E, Basso U, Celadin R, Zilio F, Pucciarelli S, Aieta M, et al. M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by CellSearch analysis. Clin Cancer Res. 2010;16:5233–43.PubMedCrossRef
19.
go back to reference Paget S. The distribution of secondary growths in cancer of the breast. Lancet Oncol. 1889;133:571–3.CrossRef Paget S. The distribution of secondary growths in cancer of the breast. Lancet Oncol. 1889;133:571–3.CrossRef
20.
go back to reference Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.PubMed Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.PubMed
21.
go back to reference Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.PubMedCrossRef Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.PubMedCrossRef
22.
go back to reference Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst. 2001;93:1638–43.PubMedCrossRef Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst. 2001;93:1638–43.PubMedCrossRef
23.
go back to reference Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, et al. Circulating tumor cells: from theory to nanotechnology-based detection. Front Pharmacol. 2017;8:1–11.CrossRef Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, et al. Circulating tumor cells: from theory to nanotechnology-based detection. Front Pharmacol. 2017;8:1–11.CrossRef
24.
go back to reference Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv. 2013;31:1063–84.PubMedCrossRef Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv. 2013;31:1063–84.PubMedCrossRef
25.
go back to reference Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6:339–51.PubMedCrossRef Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6:339–51.PubMedCrossRef
26.
27.
go back to reference Bunger S, Zimmermann M, Habermann JK. Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials. Cancer Metastasis Rev. 2015;34:527–45.PubMedCrossRef Bunger S, Zimmermann M, Habermann JK. Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials. Cancer Metastasis Rev. 2015;34:527–45.PubMedCrossRef
28.
go back to reference Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol. 2010;2:351–65.PubMedPubMedCentralCrossRef Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol. 2010;2:351–65.PubMedPubMedCentralCrossRef
29.
go back to reference Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip. 2014;14:32–44.PubMedCrossRef Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip. 2014;14:32–44.PubMedCrossRef
31.
go back to reference Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H, et al. Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal Chem. 2013;85:5692–8.PubMedCrossRef Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H, et al. Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Anal Chem. 2013;85:5692–8.PubMedCrossRef
32.
go back to reference Yeh Y-T, Harouaka RA, Zheng S-Y. Evaluating a novel dimensional reduction approach for mechanical fractionation of cells using a tandem flexible micro spring array (tFMSA). Lab Chip. 2017;17:691–701.PubMedCrossRef Yeh Y-T, Harouaka RA, Zheng S-Y. Evaluating a novel dimensional reduction approach for mechanical fractionation of cells using a tandem flexible micro spring array (tFMSA). Lab Chip. 2017;17:691–701.PubMedCrossRef
33.
go back to reference Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, Rawal S, et al. Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep. 2014;4:7392.PubMedPubMedCentralCrossRef Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, Rawal S, et al. Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep. 2014;4:7392.PubMedPubMedCentralCrossRef
34.
go back to reference Kim TH, Lim M, Park J, Oh JM, Kim H, Jeong H, et al. FAST: Size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid-liquid interface. Anal Chem. 2017;89:1155–62.PubMedCrossRef Kim TH, Lim M, Park J, Oh JM, Kim H, Jeong H, et al. FAST: Size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid-liquid interface. Anal Chem. 2017;89:1155–62.PubMedCrossRef
35.
go back to reference Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9:694–710.PubMedPubMedCentralCrossRef Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9:694–710.PubMedPubMedCentralCrossRef
36.
go back to reference Marrinucci D, Bethel K, Lazar D, Fisher J, Huynh E, Clark P, et al. Cytomorphology of circulating colorectal tumor cells:a small case series. J Oncol. 2010;2010:861341.PubMedPubMedCentralCrossRef Marrinucci D, Bethel K, Lazar D, Fisher J, Huynh E, Clark P, et al. Cytomorphology of circulating colorectal tumor cells:a small case series. J Oncol. 2010;2010:861341.PubMedPubMedCentralCrossRef
37.
go back to reference Mikolajczyk SD, Millar LS, Tsinberg P, Coutts S, Zomorrodi M, Pham T, et al. Detection of epcam-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol. 2011;2011:252361.CrossRef Mikolajczyk SD, Millar LS, Tsinberg P, Coutts S, Zomorrodi M, Pham T, et al. Detection of epcam-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol. 2011;2011:252361.CrossRef
38.
go back to reference Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, et al. A novel platform for detection of CK+ and CK- CTCs. Cancer Discov. 2011;1:580–6.PubMedPubMedCentralCrossRef Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, et al. A novel platform for detection of CK+ and CK- CTCs. Cancer Discov. 2011;1:580–6.PubMedPubMedCentralCrossRef
39.
go back to reference Serrano MJ, Ortega FG, Alvarez-Cubero MJ, Nadal R, Sanchez-Rovira P, Salido M, et al. EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget. 2014;5:7486–97.PubMedPubMedCentralCrossRef Serrano MJ, Ortega FG, Alvarez-Cubero MJ, Nadal R, Sanchez-Rovira P, Salido M, et al. EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget. 2014;5:7486–97.PubMedPubMedCentralCrossRef
40.
go back to reference Hyun KA, Jung HI. Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip. 2014;14:45–56.PubMedCrossRef Hyun KA, Jung HI. Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip. 2014;14:45–56.PubMedCrossRef
41.
go back to reference Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 2012;7:e33788.PubMedPubMedCentralCrossRef Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 2012;7:e33788.PubMedPubMedCentralCrossRef
42.
go back to reference Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9:e111597.PubMedPubMedCentralCrossRef Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9:e111597.PubMedPubMedCentralCrossRef
43.
go back to reference Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–75.PubMedCrossRef Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–75.PubMedCrossRef
44.
go back to reference Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM, Altavilla G, et al. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 2014;14:147–56.PubMedCrossRef Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM, Altavilla G, et al. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 2014;14:147–56.PubMedCrossRef
45.
go back to reference Kalinsky K, Mayer JA, Xu X, Pham T, Wong KL, Villarin E, et al. Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients. Clin Transl Oncol. 2015;17:539–46.PubMedPubMedCentralCrossRef Kalinsky K, Mayer JA, Xu X, Pham T, Wong KL, Villarin E, et al. Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients. Clin Transl Oncol. 2015;17:539–46.PubMedPubMedCentralCrossRef
46.
go back to reference Pestrin M, Bessi S, Galardi F, Truglia M, Biggeri A, Biagioni C, et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res Treat. 2009;118:523–30.PubMedCrossRef Pestrin M, Bessi S, Galardi F, Truglia M, Biggeri A, Biagioni C, et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res Treat. 2009;118:523–30.PubMedCrossRef
47.
go back to reference Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.PubMedCrossRef Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.PubMedCrossRef
48.
go back to reference Wang L, Balasubramanian P, Chen AP, Kummar S, Evrard YA, Kinders RJ. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin Oncol. 2016;43:464–75.PubMedPubMedCentralCrossRef Wang L, Balasubramanian P, Chen AP, Kummar S, Evrard YA, Kinders RJ. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin Oncol. 2016;43:464–75.PubMedPubMedCentralCrossRef
49.
go back to reference Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13:920–8.PubMedCrossRef Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13:920–8.PubMedCrossRef
50.
go back to reference Deng G, Krishnakumar S, Powell AA, Zhang H, Mindrinos MN, Telli ML, et al. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456.PubMedPubMedCentralCrossRef Deng G, Krishnakumar S, Powell AA, Zhang H, Mindrinos MN, Telli ML, et al. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456.PubMedPubMedCentralCrossRef
51.
go back to reference Miltenyi S, Muller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–8.PubMedCrossRef Miltenyi S, Muller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–8.PubMedCrossRef
52.
go back to reference Xiong K, Wei W, Jin Y, Wang S, Zhao D, Wang S, et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv Mater. 2016;28:7929–35.PubMedCrossRef Xiong K, Wei W, Jin Y, Wang S, Zhao D, Wang S, et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv Mater. 2016;28:7929–35.PubMedCrossRef
53.
go back to reference Lu N-N, Xie M, Wang J, Lv S-W, Yi J-S, Dong W-G, et al. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. ACS Appl Mater Interfaces. 2015;7:8817–26.PubMedCrossRef Lu N-N, Xie M, Wang J, Lv S-W, Yi J-S, Dong W-G, et al. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. ACS Appl Mater Interfaces. 2015;7:8817–26.PubMedCrossRef
54.
go back to reference Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc. 2008;130:8633–41.PubMedPubMedCentralCrossRef Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc. 2008;130:8633–41.PubMedPubMedCentralCrossRef
55.
go back to reference Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, Soper SA. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis. 2009;30:3289–300.PubMedPubMedCentralCrossRef Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, Soper SA. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis. 2009;30:3289–300.PubMedPubMedCentralCrossRef
56.
go back to reference Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, et al. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem. 2011;83:2301–9.PubMedPubMedCentralCrossRef Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, et al. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem. 2011;83:2301–9.PubMedPubMedCentralCrossRef
57.
go back to reference Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.PubMedPubMedCentralCrossRef Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.PubMedPubMedCentralCrossRef
58.
go back to reference Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST, et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip. 2010;10:27–9.PubMedCrossRef Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST, et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip. 2010;10:27–9.PubMedCrossRef
59.
go back to reference Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8:735–41.PubMedPubMedCentralCrossRef Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8:735–41.PubMedPubMedCentralCrossRef
60.
go back to reference Yoon HJ, Shanker A, Wang Y, Kozminsky M, Jin Q, Palanisamy N, et al. Tunable thermal-sensitive polymer–graphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv Mater. 2016;28:4891–7.PubMedPubMedCentralCrossRef Yoon HJ, Shanker A, Wang Y, Kozminsky M, Jin Q, Palanisamy N, et al. Tunable thermal-sensitive polymer–graphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv Mater. 2016;28:4891–7.PubMedPubMedCentralCrossRef
61.
go back to reference Teotia AK, Sami H, Kumar A. Thermo-responsive polymers: structure and design of smart materials. In: Zhang Z, editor. Switchable and responsive surfaces and materials for biomedical applications. Oxford: Woodhead Publishing; 2015. p. 3–43.CrossRef Teotia AK, Sami H, Kumar A. Thermo-responsive polymers: structure and design of smart materials. In: Zhang Z, editor. Switchable and responsive surfaces and materials for biomedical applications. Oxford: Woodhead Publishing; 2015. p. 3–43.CrossRef
62.
go back to reference Wang S, Liu K, Liu J, Yu ZT, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl. 2011;50:3084–8.PubMedPubMedCentralCrossRef Wang S, Liu K, Liu J, Yu ZT, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl. 2011;50:3084–8.PubMedPubMedCentralCrossRef
63.
go back to reference Park MH, Reategui E, Li W, Tessier SN, Wong KH, Jensen AE, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc. 2017;139:2741–9.PubMedPubMedCentralCrossRef Park MH, Reategui E, Li W, Tessier SN, Wong KH, Jensen AE, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc. 2017;139:2741–9.PubMedPubMedCentralCrossRef
65.
go back to reference Gallant JN, Matthew EM, Cheng H, Harouaka R, Lamparella NE, Kunkel M, et al. Predicting therapy response in live tumor cells isolated with the flexible micro spring array device. Cell Cycle. 2013;12:2132–43.PubMedPubMedCentralCrossRef Gallant JN, Matthew EM, Cheng H, Harouaka R, Lamparella NE, Kunkel M, et al. Predicting therapy response in live tumor cells isolated with the flexible micro spring array device. Cell Cycle. 2013;12:2132–43.PubMedPubMedCentralCrossRef
66.
go back to reference Ma Y, Hao S, Wang S, Zhao Y, Lim B, Lei M, et al. A combinatory strategy for detection of live ctcs using microfiltration and a new telomerase-selective adenovirus. Mol Cancer Ther. 2015;14:835–43.PubMedPubMedCentralCrossRef Ma Y, Hao S, Wang S, Zhao Y, Lim B, Lei M, et al. A combinatory strategy for detection of live ctcs using microfiltration and a new telomerase-selective adenovirus. Mol Cancer Ther. 2015;14:835–43.PubMedPubMedCentralCrossRef
67.
go back to reference Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X, et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem. 2014;60:323–33.PubMedCrossRef Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X, et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem. 2014;60:323–33.PubMedCrossRef
68.
go back to reference Huang T, Jia CP, Jun Y, Sun WJ, Wang WT, Zhang HL, et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron. 2014;51:213–8.PubMedCrossRef Huang T, Jia CP, Jun Y, Sun WJ, Wang WT, Zhang HL, et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron. 2014;51:213–8.PubMedCrossRef
69.
go back to reference Tan SJ, Yobas L, Lee GYH, Ong CN, Lim CT. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices. 2009;11:883–92.PubMedCrossRef Tan SJ, Yobas L, Lee GYH, Ong CN, Lim CT. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices. 2009;11:883–92.PubMedCrossRef
70.
go back to reference Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer. 2016;138:2894–904.PubMedPubMedCentralCrossRef Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer. 2016;138:2894–904.PubMedPubMedCentralCrossRef
72.
go back to reference Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, et al. Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem. 2010;82:6629–35.PubMedCrossRef Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, et al. Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem. 2010;82:6629–35.PubMedCrossRef
73.
go back to reference Yagi S, Koh Y, Akamatsu H, Kanai K, Hayata A, Tokudome N, et al. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One. 2017;12:e0179744.PubMedPubMedCentralCrossRef Yagi S, Koh Y, Akamatsu H, Kanai K, Hayata A, Tokudome N, et al. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One. 2017;12:e0179744.PubMedPubMedCentralCrossRef
74.
go back to reference Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–8.PubMedCrossRef Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–8.PubMedCrossRef
75.
go back to reference Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.PubMedPubMedCentralCrossRef Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.PubMedPubMedCentralCrossRef
76.
go back to reference Fachin F, Spuhler P, Martel-Foley JM, Edd JF, Barber TA, Walsh J, et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep. 2017;7:10936.PubMedPubMedCentralCrossRef Fachin F, Spuhler P, Martel-Foley JM, Edd JF, Barber TA, Walsh J, et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep. 2017;7:10936.PubMedPubMedCentralCrossRef
77.
go back to reference Sajay BN, Chang CP, Ahmad H, Khuntontong P, Wong CC, Wang Z, et al. Microfluidic platform for negative enrichment of circulating tumor cells. Biomed Microdevices. 2014;16:537–48.PubMedCrossRef Sajay BN, Chang CP, Ahmad H, Khuntontong P, Wong CC, Wang Z, et al. Microfluidic platform for negative enrichment of circulating tumor cells. Biomed Microdevices. 2014;16:537–48.PubMedCrossRef
78.
go back to reference Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589–94.PubMedPubMedCentralCrossRef Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589–94.PubMedPubMedCentralCrossRef
79.
go back to reference Yang L, Lang JC, Balasubramanian P, Jatana KR, Schuller D, Agrawal A, et al. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng. 2009;102:521–34.PubMedPubMedCentralCrossRef Yang L, Lang JC, Balasubramanian P, Jatana KR, Schuller D, Agrawal A, et al. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng. 2009;102:521–34.PubMedPubMedCentralCrossRef
80.
go back to reference Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32:891–904.PubMedCrossRef Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32:891–904.PubMedCrossRef
81.
go back to reference Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.PubMedCrossRef Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.PubMedCrossRef
82.
go back to reference Pantel K, Deneve E, Nocca D, Coffy A, Vendrell JP, Maudelonde T, et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem. 2012;58:936–40.PubMedCrossRef Pantel K, Deneve E, Nocca D, Coffy A, Vendrell JP, Maudelonde T, et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem. 2012;58:936–40.PubMedCrossRef
83.
go back to reference Cauley CE, Pitman MB, Zhou J, Perkins J, Kuleman B, Liss AS, et al. Circulating epithelial cells in patients with pancreatic lesions: clinical and pathologic findings. J Am Coll Surg. 2015;221:699–707.PubMedPubMedCentralCrossRef Cauley CE, Pitman MB, Zhou J, Perkins J, Kuleman B, Liss AS, et al. Circulating epithelial cells in patients with pancreatic lesions: clinical and pathologic findings. J Am Coll Surg. 2015;221:699–707.PubMedPubMedCentralCrossRef
84.
go back to reference Franken B, de Groot MR, Mastboom WJ, Vermes I, van der Palen J, Tibbe AG, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012;14:R133.PubMedPubMedCentralCrossRef Franken B, de Groot MR, Mastboom WJ, Vermes I, van der Palen J, Tibbe AG, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012;14:R133.PubMedPubMedCentralCrossRef
85.
go back to reference Crisan D, Ruark DS, Decker DA, Drevon AM, Dicarlo RG. Detection of circulating epithelial cells after surgery for benign breast disease. Mol Diagn. 2000;5:33–8.PubMed Crisan D, Ruark DS, Decker DA, Drevon AM, Dicarlo RG. Detection of circulating epithelial cells after surgery for benign breast disease. Mol Diagn. 2000;5:33–8.PubMed
86.
go back to reference Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61:259–66.PubMedCrossRef Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61:259–66.PubMedCrossRef
87.
go back to reference Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014;14:89–98.PubMedCrossRef Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014;14:89–98.PubMedCrossRef
88.
go back to reference Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, Yu W, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci U S A. 2009;106:3970–5.PubMedPubMedCentralCrossRef Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, Yu W, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci U S A. 2009;106:3970–5.PubMedPubMedCentralCrossRef
90.
go back to reference Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.PubMedPubMedCentralCrossRef Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.PubMedPubMedCentralCrossRef
91.
go back to reference Pluim D, Devriese LA, Beijnen JH, Schellens JH. Validation of a multiparameter flow cytometry method for the determination of phosphorylated extracellular-signal-regulated kinase and DNA in circulating tumor cells. Cytometry A. 2012;81:664–71.PubMedCrossRef Pluim D, Devriese LA, Beijnen JH, Schellens JH. Validation of a multiparameter flow cytometry method for the determination of phosphorylated extracellular-signal-regulated kinase and DNA in circulating tumor cells. Cytometry A. 2012;81:664–71.PubMedCrossRef
92.
go back to reference Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–5.PubMedPubMedCentralCrossRef Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–5.PubMedPubMedCentralCrossRef
93.
go back to reference Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.PubMedPubMedCentralCrossRef Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.PubMedPubMedCentralCrossRef
94.
go back to reference Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A. 2010;107:18392–7.PubMedPubMedCentralCrossRef Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A. 2010;107:18392–7.PubMedPubMedCentralCrossRef
95.
go back to reference Peters CE, Maestre-Battle D, Woodside SM, Thomas TE, Eaves AC. Unbiased enrichment of circulating tumor cells directly from whole blood abstract. In: Proceedings of the 107th annual meeting of the american association for cancer research. New Orleans: AACR; 2016. p. Abstract nr 511. Peters CE, Maestre-Battle D, Woodside SM, Thomas TE, Eaves AC. Unbiased enrichment of circulating tumor cells directly from whole blood abstract. In: Proceedings of the 107th annual meeting of the american association for cancer research. New Orleans: AACR; 2016. p. Abstract nr 511.
96.
go back to reference Harouaka RA, Nisic M, Zheng SY. Circulating tumor cell enrichment based on physical properties. J Lab Autom. 2013;18:455–68.PubMedCrossRef Harouaka RA, Nisic M, Zheng SY. Circulating tumor cell enrichment based on physical properties. J Lab Autom. 2013;18:455–68.PubMedCrossRef
97.
go back to reference Matthew EM, Zhou L, Yang Z, Dicker DT, Holder SL, Lim B, et al. A multiplexed marker-based algorithm for diagnosis of carcinoma of unknown primary using circulating tumor cells. Oncotarget. 2016;7:3662–76.PubMedCrossRef Matthew EM, Zhou L, Yang Z, Dicker DT, Holder SL, Lim B, et al. A multiplexed marker-based algorithm for diagnosis of carcinoma of unknown primary using circulating tumor cells. Oncotarget. 2016;7:3662–76.PubMedCrossRef
99.
go back to reference Coumans FA, van Dalum G, Beck M, Terstappen LW. Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One. 2013;8:e61770.PubMedPubMedCentralCrossRef Coumans FA, van Dalum G, Beck M, Terstappen LW. Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One. 2013;8:e61770.PubMedPubMedCentralCrossRef
100.
go back to reference Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5:179ra47.PubMedPubMedCentralCrossRef Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5:179ra47.PubMedPubMedCentralCrossRef
101.
go back to reference Apel P. Track etching technique in membrane technology. Radiat Meas. 2001;34:559–66.CrossRef Apel P. Track etching technique in membrane technology. Radiat Meas. 2001;34:559–66.CrossRef
102.
go back to reference Tan SJ, Lakshmi RL, Chen P, Lim WT, Yobas L, Lim CT. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens Bioelectron. 2010;26:1701–5.PubMedCrossRef Tan SJ, Lakshmi RL, Chen P, Lim WT, Yobas L, Lim CT. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens Bioelectron. 2010;26:1701–5.PubMedCrossRef
103.
go back to reference Miller MC, Robinson PS, Wagner C, O'Shannessy DJ. The parsortix cell separation system-a versatile liquid biopsy platform. Cytometry A. 2018;93:1234–9.PubMedCrossRefPubMedCentral Miller MC, Robinson PS, Wagner C, O'Shannessy DJ. The parsortix cell separation system-a versatile liquid biopsy platform. Cytometry A. 2018;93:1234–9.PubMedCrossRefPubMedCentral
104.
go back to reference Magbanua M, Jesus M, Park JW. Circulating tumor cells methods in molecular biology. New York: Humana Press; 2017.CrossRef Magbanua M, Jesus M, Park JW. Circulating tumor cells methods in molecular biology. New York: Humana Press; 2017.CrossRef
105.
go back to reference Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936–70.PubMedCrossRef Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936–70.PubMedCrossRef
106.
go back to reference Chudziak J, Burt DJ, Mohan S, Rothwell DG, Mesquita B, Antonello J, et al. Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst. 2016;141:669–78.PubMedCrossRef Chudziak J, Burt DJ, Mohan S, Rothwell DG, Mesquita B, Antonello J, et al. Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst. 2016;141:669–78.PubMedCrossRef
107.
go back to reference Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One. 2015;10:e0138032.PubMedPubMedCentralCrossRef Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One. 2015;10:e0138032.PubMedPubMedCentralCrossRef
108.
go back to reference Yoshino T, Kanbara H, Negishi R, Takai K, Matsunaga T, Tanaka T. Towards single-cell genome analysis of circulating tumor cells based on microcavity array. In: Yoshino T, Kanbara H, Negishi R, Takai K, Matsunaga T, Tanaka T, editors. World automation congress. Rio Grande, Puerto Rico: IEEE; 2016. p. 1–11. Yoshino T, Kanbara H, Negishi R, Takai K, Matsunaga T, Tanaka T. Towards single-cell genome analysis of circulating tumor cells based on microcavity array. In: Yoshino T, Kanbara H, Negishi R, Takai K, Matsunaga T, Tanaka T, editors. World automation congress. Rio Grande, Puerto Rico: IEEE; 2016. p. 1–11.
109.
go back to reference Negishi R, Hosokawa M, Nakamura S, Kanbara H, Kanetomo M, Kikuhara Y, et al. Development of the automated circulating tumor cell recovery system with microcavity array. Biosens Bioelectron. 2015;67:438–42.PubMedCrossRef Negishi R, Hosokawa M, Nakamura S, Kanbara H, Kanetomo M, Kikuhara Y, et al. Development of the automated circulating tumor cell recovery system with microcavity array. Biosens Bioelectron. 2015;67:438–42.PubMedCrossRef
110.
go back to reference Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS One. 2013;8:e67466.PubMedPubMedCentralCrossRef Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS One. 2013;8:e67466.PubMedPubMedCentralCrossRef
111.
go back to reference Balic M, Dandachi N, Hofmann G, Samonigg H, Loibner H, Obwaller A, et al. Comparison of two methods for enumerating circulating tumor cells in carcinoma patients. Cytometry B Clin Cytom. 2005;68:25–30.PubMedCrossRef Balic M, Dandachi N, Hofmann G, Samonigg H, Loibner H, Obwaller A, et al. Comparison of two methods for enumerating circulating tumor cells in carcinoma patients. Cytometry B Clin Cytom. 2005;68:25–30.PubMedCrossRef
112.
113.
go back to reference Obermayr E, Sanchez-Cabo F, Tea MK, Singer CF, Krainer M, Fischer MB, et al. Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. BMC Cancer. 2010;10:666.PubMedPubMedCentralCrossRef Obermayr E, Sanchez-Cabo F, Tea MK, Singer CF, Krainer M, Fischer MB, et al. Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. BMC Cancer. 2010;10:666.PubMedPubMedCentralCrossRef
114.
go back to reference Kalinich M, Bhan I, Kwan TT, Miyamoto DT, Javaid S, LiCausi JA, et al. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2017;114:1123–8.PubMedPubMedCentralCrossRef Kalinich M, Bhan I, Kwan TT, Miyamoto DT, Javaid S, LiCausi JA, et al. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2017;114:1123–8.PubMedPubMedCentralCrossRef
115.
go back to reference de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6302–9.PubMedCrossRef de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6302–9.PubMedCrossRef
116.
go back to reference Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.PubMedCrossRef Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.PubMedCrossRef
117.
go back to reference Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, et al. Scalable whole-genome single-cell library preparation without preamplification. Nat Methods. 2017;14:167–73.PubMedCrossRef Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, et al. Scalable whole-genome single-cell library preparation without preamplification. Nat Methods. 2017;14:167–73.PubMedCrossRef
118.
go back to reference Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17:175–88.PubMedCrossRef Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17:175–88.PubMedCrossRef
119.
go back to reference Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods. 2017;14:302–8.PubMedPubMedCentralCrossRef Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods. 2017;14:302–8.PubMedPubMedCentralCrossRef
120.
go back to reference Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12:44–73.PubMedCrossRef Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12:44–73.PubMedCrossRef
121.
go back to reference Kim YR, Yoo JK, Jeong CW, Choi JW. Selective killing of circulating tumor cells prevents metastasis and extends survival. J Hemat Oncol. 2018;11:114.CrossRef Kim YR, Yoo JK, Jeong CW, Choi JW. Selective killing of circulating tumor cells prevents metastasis and extends survival. J Hemat Oncol. 2018;11:114.CrossRef
Metadata
Title
Technologies for circulating tumor cell separation from whole blood
Authors
Petra Bankó
Sun Young Lee
Viola Nagygyörgy
Miklós Zrínyi
Chang Hoon Chae
Dong Hyu Cho
András Telekes
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2019
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0735-4

Other articles of this Issue 1/2019

Journal of Hematology & Oncology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine