Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2018

Open Access 01-12-2018 | Letter to the Editor

Selective killing of circulating tumor cells prevents metastasis and extends survival

Authors: Yi Rang Kim, Jung Ki Yoo, Chang Wook Jeong, Jin Woo Choi

Published in: Journal of Hematology & Oncology | Issue 1/2018

Login to get access

Abstract

Distant metastasis is initiated by circulating tumor cells (CTCs), which are considered to be a determining factor for the degree of metastasis and the survival of cancer patients. Although CTC-based diagnostic approaches are being rapidly developed, limited studies have proven the benefits of CTC elimination, with most studies providing only hypothetical inference because of the technical difficulty in examining the effects of CTC elimination in vivo. We modified photodynamic therapy to specifically eliminate green fluorescent protein (GFP)-expressing CTCs and evaluated the therapeutic efficacy of CTC elimination. When circulating blood is illuminated with a blue laser (λ = 473 nm), the combination of GFP and photosensitizers induces a selective elimination of GFP-expressing CTCs, with limited effect on normal cells. In GFP-expressing cancer cell-infused or transplanted mice models, the treatment suppressed distant metastasis and extended the survival of the tumor-bearing mice. Taken together, CTCs are a core seed to be metastasized into secondary organs and elimination of CTCs may improve the survival of cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010;16(9):398–406.CrossRef Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010;16(9):398–406.CrossRef
2.
go back to reference He W, Wang H, Hartmann LC, Cheng J-X, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci. 2007;104(28):11760–5.CrossRef He W, Wang H, Hartmann LC, Cheng J-X, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci. 2007;104(28):11760–5.CrossRef
3.
go back to reference Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.CrossRef Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.CrossRef
4.
go back to reference Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRef Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRef
5.
go back to reference Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13(3):920–8.CrossRef Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007;13(3):920–8.CrossRef
6.
go back to reference Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci. 2010;107(43):18392–7.CrossRef Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci. 2010;107(43):18392–7.CrossRef
7.
go back to reference Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007;1162(2):154–61.CrossRef Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007;1162(2):154–61.CrossRef
8.
go back to reference Raimondi C, Naso G, Gradilone A, Gianni W, Cortesi E, Gazzaniga P. Circulating tumor cells in cancer therapy: are we off target? Curr Cancer Drug Targets. 2010;10(5):509–18.CrossRef Raimondi C, Naso G, Gradilone A, Gianni W, Cortesi E, Gazzaniga P. Circulating tumor cells in cancer therapy: are we off target? Curr Cancer Drug Targets. 2010;10(5):509–18.CrossRef
9.
go back to reference Faltas B. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Front Oncol. 2012;2:68. Faltas B. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Front Oncol. 2012;2:68.
10.
go back to reference Kim YR, Kim JK, Choi JW. Fluorescent cell-selective ablation using an adaptive photodynamic method. Chem Commun. 2017;53(92):12434–7.CrossRef Kim YR, Kim JK, Choi JW. Fluorescent cell-selective ablation using an adaptive photodynamic method. Chem Commun. 2017;53(92):12434–7.CrossRef
Metadata
Title
Selective killing of circulating tumor cells prevents metastasis and extends survival
Authors
Yi Rang Kim
Jung Ki Yoo
Chang Wook Jeong
Jin Woo Choi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2018
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0658-5

Other articles of this Issue 1/2018

Journal of Hematology & Oncology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine